что такое шестнадцатиричный код
Шестнадцатеричный код.
Шестнадцатеричная система счисления (также — шестнадцатеричный код) является позиционной системой счисления с целочисленным основанием 16. Иногда в литературе также используется термин hex (произносится «хекс», сокращение от англ. hexadecimal). Цифрами данной системы счисления принято использовать арабские цифры 0—9, а также первые символы латинского алфавита A—F. Буквы соответствуют следующим десятичным значениями:
Таким образом, десять арабских цифр вкупе с шестью латинскими буквами и составляют шестнадцать цифр системы.
Кстати, на нашем сайте вы можете перевести любой текст в десятичный, шестнадцатеричный, двоичный код воспользовавшись Калькулятором кодов онлайн.
Применение. Шестнадцатеричный код широко применяется в низкоуровневом программировании, а также в различных компьютерных справочных документах. Популярность системы обоснована архитектурными решениями современных компьютеров: в них в качестве минимальной единицы информации установлен байт (состоящий из восьми бит) — а значение байта удобно записывать с помощью двух шестнадцатеричных цифр. Значение байта может ранжироваться с #00 до #FF (от 0 до 255 в десятичной записи) — другими словами, используя шестнадцатеричный код, можно записать любое состояние байта, при этом не остаётся «лишних» не используемых в записи цифр.
В кодировке Юникод для записи номера символа используется четыре шестнадцатеричных цифры. Запись цвета стандарта RGB (Red, Green, Blue — красный, зелёный, синий) также часто использует шестнадцатеричный код (например, #FF0000 — запись ярко-красного цвета).
Способ записи шестнадцатеричного кода.
Математический способ записи. В математической записи основание системы записывают в десятичном виде в нижнем индексе справа от числа. Десятичную запись числа 3032 можно записать как 303210, в шестнадцатеричной системе данное число будет иметь запись BD816.
В синтаксисе языков программирования. Синтаксис различных языков программирования по-разному устанавливает формат записи числа, использующего шестнадцатеричный код:
* В C, C++ и схожих языках (Java) для этого используется префикс «0x», например: 0x0A0B;
* В синтаксисе некоторых разновидностей языка ассемблера используется латинская буква «h», которая ставится справа от числа, например: 20Dh. Если число начинается с латинской буквы, то перед ним ставится ноль, например: 0A0Bh. Это сделано для того, чтобы отличать от констант значения, использующие шестнадцатеричный код;
* В языке разметки HTML, а также в каскадных файлах CSS, для указания цвета в формате RGB с шестнадцатеричной системой записи, используется префикс «#»: #00DC00.
Как перевести шестнадцатеричный код в другую систему?
Перевод из шестнадцатеричной системы в десятичную. Для совершения операции перевода из шестнадцатеричной системы в десятичную, требуется представить исходное число как сумму произведений цифр в разрядах шестнадцатеричного числа на степень основания.
Шестнадцатеричный код.
Шестнадцатеричная система счисления (также — шестнадцатеричный код) является позиционной системой счисления с целочисленным основанием 16. Иногда в литературе также используется термин hex (произносится «хекс», сокращение от англ. hexadecimal). Цифрами данной системы счисления принято использовать арабские цифры 0—9, а также первые символы латинского алфавита A—F. Буквы соответствуют следующим десятичным значениями:
Таким образом, десять арабских цифр вкупе с шестью латинскими буквами и составляют шестнадцать цифр системы.
Кстати, на нашем сайте вы можете перевести любой текст в десятичный, шестнадцатеричный, двоичный код воспользовавшись Калькулятором кодов онлайн.
Применение. Шестнадцатеричный код широко применяется в низкоуровневом программировании, а также в различных компьютерных справочных документах. Популярность системы обоснована архитектурными решениями современных компьютеров: в них в качестве минимальной единицы информации установлен байт (состоящий из восьми бит) — а значение байта удобно записывать с помощью двух шестнадцатеричных цифр. Значение байта может ранжироваться с #00 до #FF (от 0 до 255 в десятичной записи) — другими словами, используя шестнадцатеричный код, можно записать любое состояние байта, при этом не остаётся «лишних» не используемых в записи цифр.
В кодировке Юникод для записи номера символа используется четыре шестнадцатеричных цифры. Запись цвета стандарта RGB (Red, Green, Blue — красный, зелёный, синий) также часто использует шестнадцатеричный код (например, #FF0000 — запись ярко-красного цвета).
Способ записи шестнадцатеричного кода.
Математический способ записи. В математической записи основание системы записывают в десятичном виде в нижнем индексе справа от числа. Десятичную запись числа 3032 можно записать как 303210, в шестнадцатеричной системе данное число будет иметь запись BD816.
В синтаксисе языков программирования. Синтаксис различных языков программирования по-разному устанавливает формат записи числа, использующего шестнадцатеричный код:
* В C, C++ и схожих языках (Java) для этого используется префикс «0x», например: 0x0A0B;
* В синтаксисе некоторых разновидностей языка ассемблера используется латинская буква «h», которая ставится справа от числа, например: 20Dh. Если число начинается с латинской буквы, то перед ним ставится ноль, например: 0A0Bh. Это сделано для того, чтобы отличать от констант значения, использующие шестнадцатеричный код;
* В языке разметки HTML, а также в каскадных файлах CSS, для указания цвета в формате RGB с шестнадцатеричной системой записи, используется префикс «#»: #00DC00.
Как перевести шестнадцатеричный код в другую систему?
Перевод из шестнадцатеричной системы в десятичную. Для совершения операции перевода из шестнадцатеричной системы в десятичную, требуется представить исходное число как сумму произведений цифр в разрядах шестнадцатеричного числа на степень основания.
Общие сведения
Система счисления — метод символьного типа для записи чисел с помощью определенных знаков. Последние записываются посредством чисел и цифр. Однако не все понимают логического смысла последних терминов. Числом называется некоторая абстрактное значение, характеризующее количественные характеристики какой-либо величины, явления или процесса. Цифра является знаком, который необходим для записи числа.
Цифры бывают 2 видов: арабскими и римскими. Первые являются самыми распространенными. Они представлены знаковым интервалом от 0 до 9. Чисел больше, и поэтому используется набор цифр. Для этого и были придуманы системы исчисления. Они делятся на четыре группы:
К первой группе относятся все разрядные системы, в которых положение и порядок знака играет важную роль. От этого зависит значение величины. Если изменить положение цифр, то число изменится.
Смешанной является система, в которой присутствуют данные позиционной и непозиционной групп.Простой пример — деньги. Существуют два типа денежных знаков: монеты и купюры. Например, техника стоит 5250 рублей 50 копеек.
Для получения данной суммы следует использовать некоторое количество купюр и монет: 5250,50 = (5000 + 200 + 50) рублей + 50 копеек.
Унарной называется единичная система с одной цифрой. Последняя может быть представлена в виде 1, черты, креста и любого целого значения. Иными словами, каждый знак соответствует 1. Например, запись «1111111» эквивалентна «|||||||». Если расшифровать ее, то получится число 7. В книге Даниэля Дефо «Робинзон Крузо» герой применял данную систему для подсчета дней, проведенных на острове. Детей обучают математике на начальном уровне с помощью счетных палочек. Если вспомнить историю, то древние люди тоже пользовались унарным счислением.
Позиционные системы в программировании
Наиболее востребованными в IT-сфере являются двоичный и шестнадцатеричный коды. Они применяются для перевода десятичной системы счисления, которая понятна человеку, в машинный язык. Двоичная состоит из двух переменных, которые принимают единичное (1) или нулевое (0) значения. Это очень просто реализовать в электронике и микросхемотехнике.
Микропроцессор персонального компьютера является микросхемой. Она состоит из множества транзисторов, способных кодировать 0 и 1. Схему соединения полупроводниковых приборов составляют так, чтобы они имели два состояния (открыт и закрыт). Кроме того, реализация двоичной системы может быть выполнена в любом устройстве, которое потребляет электрический ток. Наличие кодируется как 1, а отсутствие — 0.
Берутся также некоторые физические процессы: наличие света, сопротивления, намагниченности и так далее. С системой можно связать разные величины, которые имеют два состояния. Новичкам рекомендуется сначала полностью освоить перевод из десятичной системы счисления в двоичную и обратно. После этого следует приступить к изучению шестнадцатеричного кода, расшифровка которого существенно отличается.
Работа с двоичным кодом
Выполнять манипуляции с двоичным кодом достаточно просто. Для этого следует знать основные правила и методы конвертации десятичной системы в двоичную.
Для преобразования IT-специалисты предлагают 3 метода:
Первый и второй способы используются на первоначальных этапах знакомства с системами. Они считаются ресурсоемкими, поскольку отнимают время. Последний реализуется с помощью специальных программ, поддерживающих конвертацию из одной системы в другую. Этим методом пользуются все программисты. В различных операционных системах есть приложения, работающие в таком режиме (например, калькулятор Windows).
Однако нужно подробнее разобрать первые два метода, поскольку задачи на конвертацию могут быть на экзаменах или контрольных.
Деление с отсечением остатка
Начинающему программисту необходимо обязательно знать алгоритм преобразования, и уметь применять его на практике. К
роме того, на экзаменах по дисциплинам с IT-уклоном может быть задача, в которой следует выполнить конвертацию из одной системы счисления в другую.
Перевод числа из десятичной в двоичную осуществляется по такому алгоритму:
Для наглядного примера стоит применить алгоритм на практике.
Для перевода числа 13 нужно выполнить следующие шаги:
Нужно обратить внимание на форму записи в 6 пункте.
Таким способом правильно записывается число в системах счисления.
Можно применять также вместо <2>нижний индекс, указывающий искомую систему.
Последний пункт нужно выполнять постоянно, поскольку это поможет избежать проблем при расчетах.
Если ничего нет под рукой, то можно произвести возведение в степень. Это делается следующим образом: [1011] <2>= 2 3 + 0 + 2 1 + 2 0 = 8 + 0 + 2 + 1 = [13]<10>.
Степенной метод
Для реализации этого метода необходимо воспользоваться таблицей степеней двойки (табл. 1). Ее можно составить самостоятельно или скачать из интернета. Суть метода сводится также к вычислениям и подборам значений.
Показатель степени, n | Результат возведения |
0 | 1 |
1 | 2 |
2 | 4 |
3 | 8 |
4 | 16 |
5 | 32 |
6 | 64 |
Таблица 1. Степень двойки до 6 и ее значения.
Специалисты рекомендуют воспользоваться обыкновенным калькулятором, который разрешен на экзаменах или тестах. Кроме того, следует составить таблицу, поскольку это оптимизирует процесс вычислений. Для конвертации есть специальный алгоритм:
Для проверки рекомендуется воспользоваться специальным калькулятором или выполнить сложение всех значений степеней. Для примера можно рассмотреть конвертацию числа 118 в двоичный код. Операция выполняется таким образом:
Чтобы проверить в ручном режиме, нужно произвести обратные вычисления: 2 6 + 2 5 + 2 4 + 0 + 2 2 + 2 1 + 0 = [118]<10>.
Шестнадцатеричный формат
Осуществить конвертацию из десятичного в шестнадцатеричный код (HEX — hexadecimal) можно только с использованием программ. Ручной метод основан на двойной конвертации. Для его реализации нужно перевести число, записанное в десятичной системе, в двоичный код, а затем в шестнадцатеричный.
Основанием является целочисленное значение, равное 16. Система состоит из арабских цифр от 0 до 9, а также букв, обозначающих конкретные значения: А = 10, В = 11, С = 12, D = 13, Е = 14 и F = 15. В автоматизированном режиме можно воспользоваться переводчиком шестнадцатеричного кода.
Необходимо отметить, что HEX применяется также в низкоуровневом программировании. Выбор этой системы счисления основан на решении в компьютерной технике применять такую единицу информации, как байт (состоит из 8 битов). Его удобно записывать двумя HEX-цифрами (от 0 до 255, т. е. #00 до #FF). Кроме того, шестнадцатеричный код в текст также конвертируется. Примером этому является кодировка Юникод, в которой для записи символа применяются четыре HEX-цифры. Цвет RGB-формата графического изображения также записывается с его помощью.
Способы записи
Существует несколько форм записи числа, представленного в HEX. Математическая форма выглядит таким образом: [DF5]<16>. Можно также найти запись, в которой вместо <16>стоит нижний индекс. Она применяется в информатике.
Запись отличается в языках программирования, поскольку у каждого из них различный синтаксис и правила написания кода. Основные формы представления HEX следующие:
Распространенная ошибка новичков заключается в том, что они неверно указывают HEX-числа. В результате компилятор языка выдает ошибку. Программисты рекомендуют основательно изучить синтаксис языка перед написанием приложений.
Алгоритм конвертации
Перевод в шестнадцатеричный код рекомендуется осуществлять с помощью специальных приложений (конвертеров кода). Если же их нет под рукой, то специалисты рекомендуют использовать специальный алгоритм:
Операции умножения, сложения, вычитания и деления сложны.
Они осуществляются только с помощью специальных программ или онлайн-сервисов.
Не следует путать четверичные с троичными группами, которые используются в восьмеричном коде.
Например, нужно перевести 118 в HEX-код.
Для этого следует воспользоваться описанным алгоритмом:
В некоторых случаях нужно использовать буквы. Например, для перевода числа [11110111] <2>в HEX-код нужно также воспользоваться алгоритмом, разбивая его на тетрады следующим образом: 1111 0111. Первая группа равна 2 3 + 2 2 + 2 1 + 2 0 = [15] <10>= F<16>, а вторая — 0 + 2 2 + 2 1 + 2 0 = 7. Результирующая запись имеет такой вид: [11110111] <2>= [F7]<16>.
Таким образом, HEX-код получил широкое применение в IT-сфере, поскольку он очень удобен для записи массивов информации. Однако для его конвертации в ручном режиме нужно изучить двоичную систему счисления, а также основные алгоритмы преобразования.
Шестнадцатиричная система исчисления
Шестнадцатеричная система счисления (шестнадцатеричные числа) — позиционная система счисления по целочисленному основанию 16. Обычно в качестве шестнадцатеричных цифр используются десятичные цифры от 0 до 9 и латинские буквы от A до F для обозначения цифр от 10 до 15.
Содержание
Применение
Широко используется в низкоуровневом программировании и вообще в компьютерной документации, поскольку в современных компьютерах минимальной единицей памяти является 8-битный байт, значения которого удобно записывать двумя шестнадцатеричными цифрами. Такое использование началось с системы IBM/360, где вся документация использовала шестнадцатеричную систему, в то время как в документации других компьютерных систем того времени (даже с 8-битными символами, как, например, БЭСМ-6) использовали восьмеричную систему.
В стандарте Юникода номер символа принято записывать в шестнадцатеричном виде, используя не менее 4 цифр (при необходимости — с ведущими нулями).
Способы записи
В математике
В математике систему счисления принято писать в подстрочном знаке. Например, десятичное число 1443 можно записать как 144310 или как 5A316.
В языках программирования
В разных языках программирования для записи шестнадцатеричных чисел используют различный синтаксис:
Перевод чисел из одной системы счисления в другую
Перевод чисел из шестнадцатеричной системы в десятичную
Для перевода шестнадцатеричного числа в десятичное необходимо это число представить в виде суммы произведений степеней основания шестнадцатеричной системы счисления на соответствующие цифры в разрядах шестнадцатеричного числа.
Например, требуется перевести шестнадцатеричное число 5A3 в десятичное. В этом числе 3 цифры. В соответствии с вышеуказанным правилом представим его в виде суммы степеней с основанием 16:
Перевод чисел из двоичной системы в шестнадцатеричную
Для перевода многозначного двоичного числа в шестнадцатеричную систему нужно разбить его на тетрады справа налево и заменить каждую тетраду соответствующей шестнадцатеричной цифрой.
Системы счисления. Позиционная система счисления шестнадцатеричная.
Впервые позиционная система счисления возникла в древнем Вавилоне. В Индии система работает в виде позиционной десятичной нумерации с использованием нуля, у индусов данную систему чисел позаимствовала арабская нация, у них, в свою очередь, взяли европейцы. В Европе эту систему стали называть арабской.
Позиционная система счисления — значение всех цифр зависит от позиции (разряда) данной цифры в числе.
Шестнадцатеричная система счисления.
Шестнадцатеричная система счисления (шестнадцатеричные числа) — позиционная система счисления. Основанием шестнадцатеричной системы счисления является число 16.
Записывая числа в восьмеричной системе счисления мы получаем довольно компактные выражения, однако в шестнадцатеричной системе мы получаем выражения более компактными.
Применение шестнадцатеричной системы счисления.
Шестнадцатеричную систему счисления довольно хорошо используют в современных компьютерах, например с ее помощью указывают цвет: #FFFFFF — белый цвет.
Перевод чисел из одной системы счисления в другую.
Перевод чисел из шестнадцатеричной системы в десятичную.
Что бы перевести шестнадцатеричное число в десятичное, нужно заданное число привести к виду суммы произведений степеней основания шестнадцатеричной системы счисления на соответствующие цифры в разрядах шестнадцатеричного числа.
Например, переведем шестнадцатеричное число 5A3 в десятичное. Здесь 3 цифры. Исходя их выше сказанного правила, приведем его к виду суммы степеней с основанием 16:
5A316 = 3·16 0 +10·16 1 +5·16 2 = 3·1+10·16+5·256 = 3+160+1280 = 144310
Перевод чисел из двоичной системы в шестнадцатеричную и наоборот.
Для перевода многозначного двоичного числа в шестнадцатеричную систему необходимо разделить его на тетрады справа налево и поменять все тетрады соответствующей шестнадцатеричной цифрой. Для перевода числа из шестнадцатеричной системы в двоичную необходимо поменять каждую все цифры на соответствующие тетрады из таблицы перевода, которую вы найдете ниже.
0101101000112 = 0101 1010 0011 = 5A316
Таблица перевода чисел.
Алгоритм перевода чисел из одной системы счисления в другую.
1. Из десятичной системы счисления:
2. Из двоичной системы счисления:
Например, 1000110 = 1 000 110 = 1068
Например, 1000110 = 100 0110 = 4616.