код для сервопривода arduino

Arduino – плавное управление сервоприводом v3.8

ОБНОВЛЕНИЯ

ТЕОРИЯ

Вы наверняка работали с сервоприводами из под Arduino и знаете, как это выглядит: сервоприводу можно приказать повернуться на угол, и он с максимальной скоростью начнёт поворачиваться на этот угол. Это очень неправильно применять в реальных устройствах, потому что создаются лишние нагрузки и растёт потребление тока (большой стартовый ток). Можно ли крутить серво плавно? Можно! Я сделал библиотеку ServoSmooth, которая в этом поможет.

Зачем это нужно? В реальных устройствах, где нужно сервой повернуть/подвинуть тяжёлый объект, стандартный подход (дать сигнал и ждать поворота) работает на уничтожение редуктора привода, потому что объекты инерционные и быстро их разогнать и остановить невозможно! Ограничив максимальную скорость серво, разгон и торможение мы продлеваем ресурс редуктора в десятки раз, а также потребляем меньший ток за счёт плавности прикладывания момента. И очевидно получаем приятный визуальный эффект – нет резких рывков всей конструкции при разгоне-остановке.

Так как ESC контроллеры используют такой же протокол связи, мы автоматически получаем плавный разгон и торможение для бесколлекторных моторов (в этом случае за ускорение мотора отвечает максимальная скорость, метод setSpeed. Подумайте, это уже производная). И это круто!

[УСТАРЕЛО] Алгоритм работы для любопытных: работает всё на экспоненциальном бегущем среднем, именно оно обеспечивает плавный разгон и торможение. Ограничение скорости делается “дроблением” поворота серво по времени: серво поворачивается на несколько градусов по таймеру.

Новый алгоритм работает по другому, обеспечивая более плавный разгон. Ускорение осуществляется двойным интегрированием позиции: к ней прибавляется скорость, к которой прибавляется ускорение. Торможение начинается с момента, полученного из школьной формулы S=V*V/(2*a). Для любознательных прикреплю алгоритм ниже.

код для сервопривода arduino. newAccel. код для сервопривода arduino фото. код для сервопривода arduino-newAccel. картинка код для сервопривода arduino. картинка newAccel. Вы наверняка работали с сервоприводами из под Arduino и знаете, как это выглядит: сервоприводу можно приказать повернуться на угол, и он с максимальной скоростью начнёт поворачиваться на этот угол. Это очень неправильно применять в реальных устройствах, потому что создаются лишние нагрузки и растёт потребление тока (большой стартовый ток). Можно ли крутить серво плавно? Можно! Я сделал библиотеку ServoSmooth, которая в этом поможет.

код для сервопривода arduino. blank. код для сервопривода arduino фото. код для сервопривода arduino-blank. картинка код для сервопривода arduino. картинка blank. Вы наверняка работали с сервоприводами из под Arduino и знаете, как это выглядит: сервоприводу можно приказать повернуться на угол, и он с максимальной скоростью начнёт поворачиваться на этот угол. Это очень неправильно применять в реальных устройствах, потому что создаются лишние нагрузки и растёт потребление тока (большой стартовый ток). Можно ли крутить серво плавно? Можно! Я сделал библиотеку ServoSmooth, которая в этом поможет.

БИБЛИОТЕКА

ServoSmooth v3.8

Библиотека для плавного управления сервоприводами

Поддерживаемые платформы: все Arduino-совместимые платы (библиотека является дополнением к стандартной библиотеке Servo и PCA9685)

УСТАНОВКА

ДОКУМЕНТАЦИЯ

Инициализация

Плавный пуск ( new! )

Управление

Источник

Arduino для начинающих. Урок 4. Управление сервоприводом

код для сервопривода arduino. amperka nabor. код для сервопривода arduino фото. код для сервопривода arduino-amperka nabor. картинка код для сервопривода arduino. картинка amperka nabor. Вы наверняка работали с сервоприводами из под Arduino и знаете, как это выглядит: сервоприводу можно приказать повернуться на угол, и он с максимальной скоростью начнёт поворачиваться на этот угол. Это очень неправильно применять в реальных устройствах, потому что создаются лишние нагрузки и растёт потребление тока (большой стартовый ток). Можно ли крутить серво плавно? Можно! Я сделал библиотеку ServoSmooth, которая в этом поможет.

код для сервопривода arduino. servo. код для сервопривода arduino фото. код для сервопривода arduino-servo. картинка код для сервопривода arduino. картинка servo. Вы наверняка работали с сервоприводами из под Arduino и знаете, как это выглядит: сервоприводу можно приказать повернуться на угол, и он с максимальной скоростью начнёт поворачиваться на этот угол. Это очень неправильно применять в реальных устройствах, потому что создаются лишние нагрузки и растёт потребление тока (большой стартовый ток). Можно ли крутить серво плавно? Можно! Я сделал библиотеку ServoSmooth, которая в этом поможет.

Продолжаем серию уроков “Arduino для начинающих”. Сегодня собираем модель с сервоприводом — это также одна из базовых схем. Сервоприводы используются в робототехнике для управления движениями робота. В посте помимо видео-инструкции листинг программы и схема подключения.

Сервопривод — это мотор, положением вала которого мы можем управлять. От обычного мотора он отличается тем, что ему можно точно в градусах задать положение, в которое встанет вал. Сервоприводы используются для моделирования различных механических движений роботов.

Видео-инструкция сборки модели:

Для сборки модели с сервоприводом нам потребуется:

код для сервопривода arduino. arduino servoprivod. код для сервопривода arduino фото. код для сервопривода arduino-arduino servoprivod. картинка код для сервопривода arduino. картинка arduino servoprivod. Вы наверняка работали с сервоприводами из под Arduino и знаете, как это выглядит: сервоприводу можно приказать повернуться на угол, и он с максимальной скоростью начнёт поворачиваться на этот угол. Это очень неправильно применять в реальных устройствах, потому что создаются лишние нагрузки и растёт потребление тока (большой стартовый ток). Можно ли крутить серво плавно? Можно! Я сделал библиотеку ServoSmooth, которая в этом поможет.

Компоненты для сборки модели Arduino с сервоприводом

Схема подключения модели Arduino с сервоприводом:

код для сервопривода arduino. %D1%81%D1%85%D0%B5%D0%BC%D0%B0 bb1. код для сервопривода arduino фото. код для сервопривода arduino-%D1%81%D1%85%D0%B5%D0%BC%D0%B0 bb1. картинка код для сервопривода arduino. картинка %D1%81%D1%85%D0%B5%D0%BC%D0%B0 bb1. Вы наверняка работали с сервоприводами из под Arduino и знаете, как это выглядит: сервоприводу можно приказать повернуться на угол, и он с максимальной скоростью начнёт поворачиваться на этот угол. Это очень неправильно применять в реальных устройствах, потому что создаются лишние нагрузки и растёт потребление тока (большой стартовый ток). Можно ли крутить серво плавно? Можно! Я сделал библиотеку ServoSmooth, которая в этом поможет.

Схема подключения сервопривода на Arduino

Для работы этой модели подойдет следующая программа (программу вы можете просто скопировать в Arduino IDE):

#include //используем библиотеку для работы с сервоприводом
Servo servo; //объявляем переменную servo типа Servo
void setup() //процедура setup
<
servo.attach(10); //привязываем привод к порту 10
>
void loop() //процедура loop
<
servo.write(0); //ставим вал под 0
delay(2000); //ждем 2 секунды
servo.write(180); //ставим вал под 180
delay(2000); //ждем 2 секунды
>

Последние четыре команды программы задают угол поворота вала сервопривода и время ожидания (в миллисекундах) до следующего поворота. Эти цифры можно поменять — в видео во втором варианте мы поставили 0-1000-90-1000, что означает поворот на 90 градусов с ожиданием в 1 секунду (1000 миллисекунд), возврат обратно и т.д. (процедура loop повторяется циклично).

Кроме того, в этом уроке мы впервые используем библиотеки.

Библиотека — это набор дополнительных команд, который позволяет вводить программу в упрощенном формате. Здесь мы используем библиотеку для работы с сервоприводами Servo.h.

Так выглядит собранная модель Arduino с сервоприводом:

код для сервопривода arduino. arduino servo done. код для сервопривода arduino фото. код для сервопривода arduino-arduino servo done. картинка код для сервопривода arduino. картинка arduino servo done. Вы наверняка работали с сервоприводами из под Arduino и знаете, как это выглядит: сервоприводу можно приказать повернуться на угол, и он с максимальной скоростью начнёт поворачиваться на этот угол. Это очень неправильно применять в реальных устройствах, потому что создаются лишние нагрузки и растёт потребление тока (большой стартовый ток). Можно ли крутить серво плавно? Можно! Я сделал библиотеку ServoSmooth, которая в этом поможет.

Собранная модель Arduino с сервоприводом

Смотрите также:

Посты по урокам:

Все посты сайта «Занимательная робототехника» по тегу Arduino.

Наш YouTube канал, где публикуются видео-уроки.

Не знаете, где купить Arduino? Все используемые в уроке комплектующие входят в большинство готовых комплектов Arduino, их также можно приобрести по отдельности. Подробная инструкция по выбору здесь. Низкие цены, спецпредложения и бесплатная доставка на сайтах AliExpress и DealExtreme. Если нет времени ждать посылку из Китая — рекомендуем интернет-магазины Амперка и DESSY. Низкие цены и быструю доставку предлагает интернет-магазин ROBstore. Смотри также список магазинов.

Источник

Работаем с сервоприводами

код для сервопривода arduino. servo. код для сервопривода arduino фото. код для сервопривода arduino-servo. картинка код для сервопривода arduino. картинка servo. Вы наверняка работали с сервоприводами из под Arduino и знаете, как это выглядит: сервоприводу можно приказать повернуться на угол, и он с максимальной скоростью начнёт поворачиваться на этот угол. Это очень неправильно применять в реальных устройствах, потому что создаются лишние нагрузки и растёт потребление тока (большой стартовый ток). Можно ли крутить серво плавно? Можно! Я сделал библиотеку ServoSmooth, которая в этом поможет.Внешний вид код для сервопривода arduino. servo. код для сервопривода arduino фото. код для сервопривода arduino-servo. картинка код для сервопривода arduino. картинка servo. Вы наверняка работали с сервоприводами из под Arduino и знаете, как это выглядит: сервоприводу можно приказать повернуться на угол, и он с максимальной скоростью начнёт поворачиваться на этот угол. Это очень неправильно применять в реальных устройствах, потому что создаются лишние нагрузки и растёт потребление тока (большой стартовый ток). Можно ли крутить серво плавно? Можно! Я сделал библиотеку ServoSmooth, которая в этом поможет.Fritzing код для сервопривода arduino. servo schem. код для сервопривода arduino фото. код для сервопривода arduino-servo schem. картинка код для сервопривода arduino. картинка servo schem. Вы наверняка работали с сервоприводами из под Arduino и знаете, как это выглядит: сервоприводу можно приказать повернуться на угол, и он с максимальной скоростью начнёт поворачиваться на этот угол. Это очень неправильно применять в реальных устройствах, потому что создаются лишние нагрузки и растёт потребление тока (большой стартовый ток). Можно ли крутить серво плавно? Можно! Я сделал библиотеку ServoSmooth, которая в этом поможет.Условное обозначение на схеме

Наиболее популярны сервоприводы, которые удерживают заданный угол и сервоприводы, поддерживающие заданную скорость вращения.

Сервоприводы имеют несколько составных частей. Привод — электромотор с редуктором. Зачастую скорость вращения мотора бывает слишком большой для практического использования. Для понижения скорости используется редуктор: механизм из шестерней, передающий и преобразующий крутящий момент.

Кроме электромотора, редуктора и потенциометра в сервоприводе имеется электронная начинка, которая отвечает за приём внешнего параметра, считывание значений с потенциометра, их сравнение и включение/выключение мотора. Она-то и отвечает за поддержание отрицательной обратной связи.

К сервоприводу тянется три провода. Два из них отвечают за питание мотора и землю, третий доставляет управляющий сигнал, который используется для выставления положения устройства.

код для сервопривода arduino. servo2. код для сервопривода arduino фото. код для сервопривода arduino-servo2. картинка код для сервопривода arduino. картинка servo2. Вы наверняка работали с сервоприводами из под Arduino и знаете, как это выглядит: сервоприводу можно приказать повернуться на угол, и он с максимальной скоростью начнёт поворачиваться на этот угол. Это очень неправильно применять в реальных устройствах, потому что создаются лишние нагрузки и растёт потребление тока (большой стартовый ток). Можно ли крутить серво плавно? Можно! Я сделал библиотеку ServoSmooth, которая в этом поможет.

Крутящий момент и скорость поворота

Крутящий момент — векторная физическая величина, равная произведению радиус-вектора, проведённого от оси вращения к точке приложения силы, на вектор этой силы. Характеризует вращательное действие силы на твёрдое тело. Эта характеристика показывает, насколько тяжёлый груз сервопривод способен удержать в покое на рычаге заданной длины. Если крутящий момент сервопривода равен 5 кг×см, то это значит, что сервопривод удержит на весу в горизонтальном положении рычаг длины 1 см, на свободный конец которого подвесили 5 кг. Или, что эквивалентно, рычаг длины 5 см, к которому подвесили 1 кг.

Скорость сервопривода измеряется интервалом времени, который требуется рычагу сервопривода, чтобы повернуться на 60°. Характеристика 0,1 с/60° означает, что сервопривод поворачивается на 60° за 0,1 с. Из неё несложно вычислить скорость в более привычной величине, оборотах в минуту, но так сложилось, что при описании сервоприводов чаще всего используют такую единицу.

Иногда приходится искать компромисс между этими двумя характеристиками, так как если мы хотим надёжный, выдерживающий большой вес сервопривод, то мы должны быть готовы, что эта могучая установка будет медленно поворачиваться. А если мы хотим очень быстрый привод, то его будет относительно легко вывести из положения равновесия. При использовании одного и того же мотора баланс определяет конфигурация шестерней в редукторе.

Виды сервоприводов

Сервоприводы бывают аналоговые и цифровые. Различаются они лишь внутренней управляющей электроникой. Вместо специальной микросхемы аналогового сервопривода у цифрового собрата можно заметить на плате микропроцессор, который принимает импульсы, анализирует их и управляет мотором. Таким образом, в физическом исполнении отличие лишь в способе обработки импульсов и управлении мотором.

Шестерни для сервоприводов бывают из разных материалов: пластиковые, карбоновые, металлические.

Пластиковые, чаще всего нейлоновые, шестерни очень лёгкие, не подвержены износу, более всего распространены в сервоприводах. Они не выдерживают больших нагрузок, однако если нагрузки предполагаются небольшие, то нейлоновые шестерни — лучший выбор.

Карбоновые шестерни более долговечны, практически не изнашиваются, в несколько раз прочнее нейлоновых. Основной недостаток — дороговизна.

Металлические шестерни являются самыми тяжёлыми, однако они выдерживают максимальные нагрузки. Достаточно быстро изнашиваются, так что придётся менять шестерни практически каждый сезон. Шестерни из титана — фавориты среди металлических шестерней, причём как по техническим характеристикам, так и по цене. Они достаточно дорогие.

Существует три типа моторов сервоприводов: обычный мотор с сердечником, мотор без сердечника и бесколлекторный мотор.

Обычный мотор с сердечником (справа) обладает плотным железным ротором с проволочной обмоткой и магнитами вокруг него. Ротор имеет несколько секций, поэтому когда мотор вращается, ротор вызывает небольшие колебания мотора при прохождении секций мимо магнитов, а в результате получается сервопривод, который вибрирует и является менее точным, чем сервопривод с мотором без сердечника. Мотор с полым ротором (слева) обладает единым магнитным сердечником с обмоткой в форме цилиндра или колокола вокруг магнита. Конструкция без сердечника легче по весу и не имеет секций, что приводит к более быстрому отклику и ровной работе без вибраций. Такие моторы дороже, но они обеспечивают более высокий уровень контроля, вращающего момента и скорости по сравнения со стандартными.

Сервоприводы с бесколлекторным мотором появились сравнительно недавно. У бесколлекторных моторов нет щёток, а значит они не создают сопротивление вращению и не изнашиваются, скорость и момент выше при токопотреблении равном коллекторным моторам. Сервоприводы с бесколлекторным мотором — самые дорогие сервоприводы, однако при этом они обладают лучшими характеристиками по сравнению с сервоприводами с другими типами моторов.

Подключение к Arduino

Многие сервоприводы могут быть подключены к Arduino непосредственно. Для этого от них идёт шлейф из трёх проводов:

код для сервопривода arduino. servo3. код для сервопривода arduino фото. код для сервопривода arduino-servo3. картинка код для сервопривода arduino. картинка servo3. Вы наверняка работали с сервоприводами из под Arduino и знаете, как это выглядит: сервоприводу можно приказать повернуться на угол, и он с максимальной скоростью начнёт поворачиваться на этот угол. Это очень неправильно применять в реальных устройствах, потому что создаются лишние нагрузки и растёт потребление тока (большой стартовый ток). Можно ли крутить серво плавно? Можно! Я сделал библиотеку ServoSmooth, которая в этом поможет.

Обычный хобби-сервопривод во время работы потребляет более 100 мА. При этом Arduino способно выдавать до 500 мА. Поэтому, если вам в проекте необходимо использовать мощный сервопривод, есть смысл задуматься о выделении его в контур с дополнительным питанием.

Библиотеки для управления сервоприводами (Servo) и для работы с приёмниками/ передатчиками на 433 МГц VirtualWire используют одно и то же прерывание. Это означает, что их нельзя использовать в одном проекте одновременно. Существует альтернативная библиотека для управления сервомоторами — Servo2.

Сервоприводы обычно имеют ограниченный угол вращения 180 градусов, их так и называют «сервопривод 180°». Но существуют сервоприводы с неограниченным углом поворота оси. Это сервоприводы постоянного вращения или «сервоприводы 360°».

Управляем через импульсы

Библиотека Servo

Можно генерировать управляющие импульсы самостоятельно, но это настолько распространённая задача, что для её упрощения существует стандартная библиотека Servo.

Сервопривод постоянного вращения можно управлять с помощью библиотек Servo или Servo2. Отличие заключается в том, что функция Servo.write(angle) задаёт не угол, а скорость вращения привода.

Библиотека Servo позволяет осуществлять программное управление сервоприводами. Управление осуществляется следующими функциями:

В библиотеке Servo для Arduino по умолчанию выставлены следующие значения длин импульса: 544 мкс — для 0° и 2400 мкс — для 180°.

Пример подключения двух сервоприводов.

Библиотека Servo не совместима с библиотекой VirtualWire для работы с приёмником и передатчиком на 433 МГц, так как они используют одно и то же прерывание. Это означает, что их нельзя использовать в одном проекте одновременно. Существует альтернативная библиотека для управления сервомоторами — Servo2. Все методы библиотеки Servo2 совпадают с методами Servo.

При работе с сервоприводами на 360 градусов функции работают по другому.

Функция ArduinoСервопривод 180°Сервопривод 360°
Servo.write(0)Крайне левое положениеПолный ход в одном направлении
Servo.write(90)Среднее положениеОстановка сервопривода
Servo.write(180)Крайне правое положениеПолный ход в обратном направлении

Sweep

Скетч File | Examples | Servo | Sweep постоянно поворачивает насадку на 180 градусов и возвращает её обратно. В примере используется встроенная библиотека Servo.

код для сервопривода arduino. sweep. код для сервопривода arduino фото. код для сервопривода arduino-sweep. картинка код для сервопривода arduino. картинка sweep. Вы наверняка работали с сервоприводами из под Arduino и знаете, как это выглядит: сервоприводу можно приказать повернуться на угол, и он с максимальной скоростью начнёт поворачиваться на этот угол. Это очень неправильно применять в реальных устройствах, потому что создаются лишние нагрузки и растёт потребление тока (большой стартовый ток). Можно ли крутить серво плавно? Можно! Я сделал библиотеку ServoSmooth, которая в этом поможет.

Скетч File | Examples | Servo | Knob управляет сервоприводом при помощи потенциометра. В примере используется встроенная библиотека Servo.

код для сервопривода arduino. knob. код для сервопривода arduino фото. код для сервопривода arduino-knob. картинка код для сервопривода arduino. картинка knob. Вы наверняка работали с сервоприводами из под Arduino и знаете, как это выглядит: сервоприводу можно приказать повернуться на угол, и он с максимальной скоростью начнёт поворачиваться на этот угол. Это очень неправильно применять в реальных устройствах, потому что создаются лишние нагрузки и растёт потребление тока (большой стартовый ток). Можно ли крутить серво плавно? Можно! Я сделал библиотеку ServoSmooth, которая в этом поможет.

Случайные повороты

Будем поворачивать серводвигатель на случайную величину. Практического смысла немного, но для демонстрации подойдёт.

Источник

Arduino библиотека Servo

Arduino библиотека Servo представляет собой набор функций для управления сервоприводами. Данная библиотека дает возможность управлять сразу двенадцатью сервоприводами с помощью большинства микроконтроллеров Ардуино. Некоторые платы Ардуино позволяют подключать меньше сервоприводов (такие платы как Arduino LilyPad) так как у их меньше цифровых вводов/выводов. Другие платы дают возможность управлять сразу 48-ю сервоприводами (Arduino Mega).

Использование библиотеки Servo накладывает некоторые ограничения. На всех платах кроме Arduino Mega, при работе с данной библиотекой, пропадает возможность использовать цифровые пины 9 и 10 в режиме ШИМ. На плате Ардуино Мега режим ШИМ становится не доступен на пинах 11 и 12, только при подключении более 12 сервоприводов.

Скачать библиотеку Servo.h

Данная библиотека автоматически устанавливается вместе с Arduino IDE. Но вы можете отдельно скачать библиотеку Servo для Ардуино. Для установки библиотеки просто распакуйте zip архив в папку «C:\Program Files (x86)\Arduino\libraries» или в то место, где у васт установлена среда разработки Arduin IDE. Если у вас запущена программа Arduino IDE, то для работы с новой библиотекой её необходимо перезапустить.

После того как вы скачали библиотеку Servo и установили ее, вы можете подключать библиотеку в свои скетчи и вам будут доступны примеры использования данной библиотеки.

Для использование библиотеки Servo необходимо подключить ее в свой скетч и создать переменную типа servo. Сделать это очень просто:

attach()

Указывает вывод к которому подключен сервопривод.

Синтаксис

Параметры

pin — Обязательный параметр. Цифровой пин к которому подключен сигнальный провод сервопривода.

min — Необязательный параметр. Ширина импульса в микросекундах, соответствующая минимальному (угол 0 градусов) положению сервопривода. (по умолчанию 544)

max — Необязательный параметр. Ширина импульса в микросекундах, соответствующая максимальному (угол 180 градусов) положению сервопривода.

Возвращаемые значения

write()

Поворачивает сервопривод на заданный угол. Для сервоприводов постоянного вращения устанавливает скорость и направление вращения.

Синтаксис

Параметры

angle — Обязательный параметр. Устанавливает угол от 0 до 180 градусов. При использовании сервопривода постоянного вращения значение 90 используется для неподвижного состояния. Значение 0 для максимальной скорости кручения в одну сторону, а 180 для максимальной скорости кручения в другую сторону.

Возвращаемые значения

writeMicroseconds()

Поворачивает сервопривод на угол заданный в микросекундах. С сервоприводами постоянного вращения работает по таком же принципу как и функция write().

Синтаксис

Параметры

ms — Обязательный параметр. Значение в микросекундах

Возвращаемые значения

Возвращает текущее положение сервопривода.

Синтаксис

Параметры

Возвращаемые значения

attached()

Проверяет, указан ли управляющий пин для экземпляра класса Servo.

Синтаксис

Параметры

Возвращаемые значения

boolean true — если пин был указан и false — если нет

detach()

Отсоединяет экземпляр класса от пина. При отсоединения всех сервоприводов, заблокированные ШИМ выводу снова станут доступны.

Синтаксис

Параметры

Возвращаемые значения

Железо

код для сервопривода arduino. 2560 r3 rfid.jpg 640x640. код для сервопривода arduino фото. код для сервопривода arduino-2560 r3 rfid.jpg 640x640. картинка код для сервопривода arduino. картинка 2560 r3 rfid.jpg 640x640. Вы наверняка работали с сервоприводами из под Arduino и знаете, как это выглядит: сервоприводу можно приказать повернуться на угол, и он с максимальной скоростью начнёт поворачиваться на этот угол. Это очень неправильно применять в реальных устройствах, потому что создаются лишние нагрузки и растёт потребление тока (большой стартовый ток). Можно ли крутить серво плавно? Можно! Я сделал библиотеку ServoSmooth, которая в этом поможет.

Это расширенный стартовый набор. В комплект входит Arduino Mega R3, макетные платы, множество датчиков, управляемые механизмы и необходимые радиоэлектронные компоненты. Полный список.

код для сервопривода arduino. proc01 01. код для сервопривода arduino фото. код для сервопривода arduino-proc01 01. картинка код для сервопривода arduino. картинка proc01 01. Вы наверняка работали с сервоприводами из под Arduino и знаете, как это выглядит: сервоприводу можно приказать повернуться на угол, и он с максимальной скоростью начнёт поворачиваться на этот угол. Это очень неправильно применять в реальных устройствах, потому что создаются лишние нагрузки и растёт потребление тока (большой стартовый ток). Можно ли крутить серво плавно? Можно! Я сделал библиотеку ServoSmooth, которая в этом поможет.

код для сервопривода arduino. mb102 diy kit mb 102. код для сервопривода arduino фото. код для сервопривода arduino-mb102 diy kit mb 102. картинка код для сервопривода arduino. картинка mb102 diy kit mb 102. Вы наверняка работали с сервоприводами из под Arduino и знаете, как это выглядит: сервоприводу можно приказать повернуться на угол, и он с максимальной скоростью начнёт поворачиваться на этот угол. Это очень неправильно применять в реальных устройствах, потому что создаются лишние нагрузки и растёт потребление тока (большой стартовый ток). Можно ли крутить серво плавно? Можно! Я сделал библиотеку ServoSmooth, которая в этом поможет.

Макетная плата на 830 точек и ничего лишнего.

Источник

Сервоприводы: подключение, управление, примеры работы

Познакомимся поближе с сервоприводами. Рассмотрим их разновидности, предназначение, подсказки по подключению и управлению.

код для сервопривода arduino. articles:servo:servo.1. код для сервопривода arduino фото. код для сервопривода arduino-articles:servo:servo.1. картинка код для сервопривода arduino. картинка articles:servo:servo.1. Вы наверняка работали с сервоприводами из под Arduino и знаете, как это выглядит: сервоприводу можно приказать повернуться на угол, и он с максимальной скоростью начнёт поворачиваться на этот угол. Это очень неправильно применять в реальных устройствах, потому что создаются лишние нагрузки и растёт потребление тока (большой стартовый ток). Можно ли крутить серво плавно? Можно! Я сделал библиотеку ServoSmooth, которая в этом поможет.

Что такое сервопривод?

Сервопривод — это мотор с управлением через отрицательную обратную связь, позволяющую точно управлять параметрами движения. Сервомотором является любой тип механического привода, имеющий в составе датчик положения и плату управления.

Простыми словами, сервопривод — это механизм с электромотором, который может поворачиваться в заданный угол и удерживать текущее положение.

Элементы сервопривода

Рассмотрим составные части сервопривода.

код для сервопривода arduino. articles:servo:servo annotation. код для сервопривода arduino фото. код для сервопривода arduino-articles:servo:servo annotation. картинка код для сервопривода arduino. картинка articles:servo:servo annotation. Вы наверняка работали с сервоприводами из под Arduino и знаете, как это выглядит: сервоприводу можно приказать повернуться на угол, и он с максимальной скоростью начнёт поворачиваться на этот угол. Это очень неправильно применять в реальных устройствах, потому что создаются лишние нагрузки и растёт потребление тока (большой стартовый ток). Можно ли крутить серво плавно? Можно! Я сделал библиотеку ServoSmooth, которая в этом поможет.

Электромотор с редуктором

За преобразование электричества в механический поворот в сервоприводе отвечает электромотор. В асинхронных сервоприводах установлен коллекторный мотор, а в синхронных — бесколлекторный.

Однако зачастую скорость вращения мотора слишком большая для практического использования, а крутящий момент — наоборот слишком слабый. Для решения двух проблем используется редуктор: механизм из шестерней, передающий и преобразующий крутящий момент.

Включая и выключая электромотор, вращается выходной вал — конечная шестерня редуктора, к которой можно прикрепить нечто, чем мы хотим управлять.

Позиционер

Для контроля положения вала, на сервоприводе установлен датчик обратной связи, например потенциометр или энкодер. Позиционер преобразует угол поворота вала обратно в электрический сигнал.

Плата управления

За всю обработку данных в сервоприводе отвечает плата управления, которая сравнивает внешнее значения с микроконтроллера со показателем датчика обратной связи, и по результату соответственно включает или выключает мотор.

Выходной вал

Вал — это часть редуктора, которая выведена за пределы корпуса мотора и непосредственно приводиться в движение при подаче управляющих сигналов на сервопривод. В комплектации сервомоторов идут качельки разных формфакторов, которые одеваются на вал сервопривода для дальнейшей коммуникации с вашими задумками. код для сервопривода arduino. articles:servo:servo.2. код для сервопривода arduino фото. код для сервопривода arduino-articles:servo:servo.2. картинка код для сервопривода arduino. картинка articles:servo:servo.2. Вы наверняка работали с сервоприводами из под Arduino и знаете, как это выглядит: сервоприводу можно приказать повернуться на угол, и он с максимальной скоростью начнёт поворачиваться на этот угол. Это очень неправильно применять в реальных устройствах, потому что создаются лишние нагрузки и растёт потребление тока (большой стартовый ток). Можно ли крутить серво плавно? Можно! Я сделал библиотеку ServoSmooth, которая в этом поможет.Не рекомендуем прилагать к валу нагрузки, которые больше крутящего момента сервопривода. Это может привести к разрушению редуктора.

Выходной шлейф

Для работы сервопривода его необходимо подключить к источнику питания и к управляющей плате. Для коммуникации от сервопривода выходит шлейф из трёх проводов:

Если сервопривод питается напряжением от 5 вольт и потребляет ток менее 500 мА, то есть возможность обойтись без внешнего источника питания и подключить провод питания сервомотора непосредственно к питанию микроконтроллера.

Управление сервоприводом

Алгоритм работы

Интерфейс управления

Чтобы указать сервоприводу желаемое состояние, по сигнальному проводу необходимо посылать управляющий сигнал — импульсы постоянной частоты и переменной ширины.

код для сервопривода arduino. articles:servo:servo.2. код для сервопривода arduino фото. код для сервопривода arduino-articles:servo:servo.2. картинка код для сервопривода arduino. картинка articles:servo:servo.2. Вы наверняка работали с сервоприводами из под Arduino и знаете, как это выглядит: сервоприводу можно приказать повернуться на угол, и он с максимальной скоростью начнёт поворачиваться на этот угол. Это очень неправильно применять в реальных устройствах, потому что создаются лишние нагрузки и растёт потребление тока (большой стартовый ток). Можно ли крутить серво плавно? Можно! Я сделал библиотеку ServoSmooth, которая в этом поможет.

То, какое положение должен занять сервопривод, зависит от длины импульсов. Когда сигнал от микроконтроллера поступает в управляющую схему сервопривода, имеющийся в нём генератор импульсов производит свой импульс, длительность которого определяется через датчик обратной связи. Далее схема сравнивает длительность двух импульсов:

Для управления хобби-сервоприводами подают импульсы с частотой 50 Гц, т.е. период равен 20 мс:

Обратите внимание, что на вашем конкретном устройстве заводские настройки могут оказаться отличными от стандартных. Некоторые сервоприводы используют ширину импульса 760 мкс. Среднее положение при этом соответствует 760 мкс, аналогично тому, как в обычных сервоприводах среднему положению соответствует 1520 мкс.

Это всего лишь общепринятые длины. Даже в рамках одной и той же модели сервопривода может существовать погрешность, допускаемая при производстве, которая приводит к тому, что рабочий диапазон длин импульсов отличается. Для точной работы каждый конкретный сервопривод должен быть откалиброван: путём экспериментов необходимо подобрать корректный диапазон, характерный именно для него.

Часто способ управления сервоприводами называют PWM (Pulse Width Modulation) или PPM (Pulse Position Modulation). Это не так, и использование этих способов может даже повредить привод. Корректный термин — PDM (Pulse Duration Modulation) в котором важна длина импульсов, а не частота.

Характеристики сервопривода

Рассмотрим основные характеристики сервоприводов.

Крутящий момент

Момент силы или крутящий момент показывает, насколько тяжёлый груз сервопривод способен удержать в покое на рычаге заданной длины. Если крутящий момент сервопривода равен 5 кг×см, то это значит, что сервопривод удержит на весу в горизонтальном положении рычаг длины 1 см, на свободный конец которого подвесили 5 кг. Или, что эквивалентно, рычаг длины 5 см, к которому подвесили 1 кг.

код для сервопривода arduino. %D1%80%D0%BE%D0%B1%D0%BE%D1%82%D0%BE%D1%82%D0%B5%D1%85%D0%BD%D0%B8%D0%BA%D0%B0:img:servo:servo forces. код для сервопривода arduino фото. код для сервопривода arduino-%D1%80%D0%BE%D0%B1%D0%BE%D1%82%D0%BE%D1%82%D0%B5%D1%85%D0%BD%D0%B8%D0%BA%D0%B0:img:servo:servo forces. картинка код для сервопривода arduino. картинка %D1%80%D0%BE%D0%B1%D0%BE%D1%82%D0%BE%D1%82%D0%B5%D1%85%D0%BD%D0%B8%D0%BA%D0%B0:img:servo:servo forces. Вы наверняка работали с сервоприводами из под Arduino и знаете, как это выглядит: сервоприводу можно приказать повернуться на угол, и он с максимальной скоростью начнёт поворачиваться на этот угол. Это очень неправильно применять в реальных устройствах, потому что создаются лишние нагрузки и растёт потребление тока (большой стартовый ток). Можно ли крутить серво плавно? Можно! Я сделал библиотеку ServoSmooth, которая в этом поможет.

Скорость поворота

Скорость сервопривода — это время, которое требуется выходному валу повернуться на 60°. Характеристика 0,1 с/60° означает, что сервопривод поворачивается на 60° за 0,1 с. Из неё можно вычислить скорость в оборотах в минуту, но так сложилось, что при описании сервоприводов чаще всего используют именно интервал времени за 60°.

Форм-фактор

Сервоприводы различаются по размерам. И хотя официальной классификации не существует, производители давно придерживаются нескольких размеров с общепринятым расположением крепёжных элементов.

Форм-факторВесРазмеры
Микро8-25 г22×15×25 мм
Стандартный40-80 г40×20×37 мм
Большой50-90 г49×25×40 мм

Внутренний интерфейс

Сервоприводы бывают аналоговые и цифровые. Так в чём же их отличия, достоинства и недостатки?

Внешне они ничем не отличаются: электромоторы, редукторы, потенциометры у них одинаковые, различаются они лишь внутренней управляющей электроникой. Вместо специальной микросхемы аналогового сервопривода у цифрового собрата можно заметить на плате микропроцессор, который принимает импульсы, анализирует их и управляет мотором. Таким образом, в физическом исполнении отличие лишь в способе обработки импульсов и управлении мотором.

код для сервопривода arduino. %D1%80%D0%BE%D0%B1%D0%BE%D1%82%D0%BE%D1%82%D0%B5%D1%85%D0%BD%D0%B8%D0%BA%D0%B0:img:servo:analog digital3. код для сервопривода arduino фото. код для сервопривода arduino-%D1%80%D0%BE%D0%B1%D0%BE%D1%82%D0%BE%D1%82%D0%B5%D1%85%D0%BD%D0%B8%D0%BA%D0%B0:img:servo:analog digital3. картинка код для сервопривода arduino. картинка %D1%80%D0%BE%D0%B1%D0%BE%D1%82%D0%BE%D1%82%D0%B5%D1%85%D0%BD%D0%B8%D0%BA%D0%B0:img:servo:analog digital3. Вы наверняка работали с сервоприводами из под Arduino и знаете, как это выглядит: сервоприводу можно приказать повернуться на угол, и он с максимальной скоростью начнёт поворачиваться на этот угол. Это очень неправильно применять в реальных устройствах, потому что создаются лишние нагрузки и растёт потребление тока (большой стартовый ток). Можно ли крутить серво плавно? Можно! Я сделал библиотеку ServoSmooth, которая в этом поможет.

Оба типа сервопривода принимают одинаковые управляющие импульсы. После этого аналоговый сервопривод принимает решение, надо ли изменять положение, и в случае необходимости посылает сигнал на мотор. Происходит это обычно с частотой 50 Гц. Таким образом получаем 20 мс — минимальное время реакции. В это время любое внешнее воздействие способно изменить положение сервопривода. Но это не единственная проблема. В состоянии покоя на электромотор не подаётся напряжение, в случае небольшого отклонения от равновесия на электромотор подаётся короткий сигнал малой мощности. Чем больше отклонение, тем мощнее сигнал. Таким образом, при малых отклонениях сервопривод не сможет быстро вращать мотор или развивать большой момент. Образуются «мёртвые зоны» по времени и расстоянию.

Эти проблемы можно решать за счёт увеличения частоты приёма, обработки сигнала и управления электромотором. Цифровые сервприводы используют специальный процессор, который получает управляющие импульсы, обрабатывает их и посылает сигналы на мотор с частотой 200 Гц и более. Получается, что цифровой сервопривод способен быстрее реагировать на внешние воздействия, быстрее развивать необходимые скорость и крутящий момент, а значит, лучше удерживать заданную позицию, что хорошо. Конечно, при этом он потребляет больше электроэнергии. Также цифровые сервоприводы сложнее в производстве, а потому стоят заметно дороже. Собственно, эти два недостатка — все минусы, которые есть у цифровых сервоприводов. В техническом плане они безоговорочно побеждают аналоговые сервоприводы.

Материалы шестерней

Шестерни для сервоприводов бывают из разных материалов: пластиковые, карбоновые, металлические. Все они широко используются, выбор зависит от конкретной задачи и от того, какие характеристики требуются в установке.

код для сервопривода arduino. %D1%80%D0%BE%D0%B1%D0%BE%D1%82%D0%BE%D1%82%D0%B5%D1%85%D0%BD%D0%B8%D0%BA%D0%B0:img:servo:material2. код для сервопривода arduino фото. код для сервопривода arduino-%D1%80%D0%BE%D0%B1%D0%BE%D1%82%D0%BE%D1%82%D0%B5%D1%85%D0%BD%D0%B8%D0%BA%D0%B0:img:servo:material2. картинка код для сервопривода arduino. картинка %D1%80%D0%BE%D0%B1%D0%BE%D1%82%D0%BE%D1%82%D0%B5%D1%85%D0%BD%D0%B8%D0%BA%D0%B0:img:servo:material2. Вы наверняка работали с сервоприводами из под Arduino и знаете, как это выглядит: сервоприводу можно приказать повернуться на угол, и он с максимальной скоростью начнёт поворачиваться на этот угол. Это очень неправильно применять в реальных устройствах, потому что создаются лишние нагрузки и растёт потребление тока (большой стартовый ток). Можно ли крутить серво плавно? Можно! Я сделал библиотеку ServoSmooth, которая в этом поможет.

Пластиковые, чаще всего нейлоновые, шестерни очень лёгкие, не подвержены износу, более всего распространены в сервоприводах. Они не выдерживают больших нагрузок, однако если нагрузки предполагаются небольшие, то нейлоновые шестерни — лучший выбор.

Карбоновые шестерни более долговечны, практически не изнашиваются, в несколько раз прочнее нейлоновых. Основной недостатой — дороговизна.

Металлические шестерни являются самыми тяжёлыми, однако они выдерживают максимальные нагрузки. Достаточно быстро изнашиваются, так что придётся менять шестерни практически каждый сезон. Шестерни из титана — фавориты среди металлических шестерней, причём как по техническим характеристикам, так и по цене. К сожалению, они обойдутся вам достаточно дорого.

Коллекторные и бесколлекторные моторы

Существует три типа моторов сервоприводов: обычный мотор с сердечником, мотор без сердечника и бесколлекторный мотор.

код для сервопривода arduino. %D1%80%D0%BE%D0%B1%D0%BE%D1%82%D0%BE%D1%82%D0%B5%D1%85%D0%BD%D0%B8%D0%BA%D0%B0:img:servo:standart coreless. код для сервопривода arduino фото. код для сервопривода arduino-%D1%80%D0%BE%D0%B1%D0%BE%D1%82%D0%BE%D1%82%D0%B5%D1%85%D0%BD%D0%B8%D0%BA%D0%B0:img:servo:standart coreless. картинка код для сервопривода arduino. картинка %D1%80%D0%BE%D0%B1%D0%BE%D1%82%D0%BE%D1%82%D0%B5%D1%85%D0%BD%D0%B8%D0%BA%D0%B0:img:servo:standart coreless. Вы наверняка работали с сервоприводами из под Arduino и знаете, как это выглядит: сервоприводу можно приказать повернуться на угол, и он с максимальной скоростью начнёт поворачиваться на этот угол. Это очень неправильно применять в реальных устройствах, потому что создаются лишние нагрузки и растёт потребление тока (большой стартовый ток). Можно ли крутить серво плавно? Можно! Я сделал библиотеку ServoSmooth, которая в этом поможет.

Обычный мотор с сердечником (справа) обладает плотным железным ротором с проволочной обмоткой и магнитами вокруг него. Ротор имеет несколько секций, поэтому когда мотор вращается, ротор вызывает небольшие колебания мотора при прохождении секций мимо магнитов, а в результате получается сервопривод, который вибрирует и является менее точным, чем сервопривод с мотором без сердечника. Мотор с полым ротором (слева) обладает единым магнитным сердечником с обмоткой в форме цилиндра или колокола вокруг магнита. Конструкция без сердечника легче по весу и не имеет секций, что приводит к более быстрому отклику и ровной работе без вибраций. Такие моторы дороже, но они обеспечивают более высокий уровень контроля, вращающего момента и скорости по сравнения со стандартными.

код для сервопривода arduino. %D1%80%D0%BE%D0%B1%D0%BE%D1%82%D0%BE%D1%82%D0%B5%D1%85%D0%BD%D0%B8%D0%BA%D0%B0:img:servo:brushless inside2. код для сервопривода arduino фото. код для сервопривода arduino-%D1%80%D0%BE%D0%B1%D0%BE%D1%82%D0%BE%D1%82%D0%B5%D1%85%D0%BD%D0%B8%D0%BA%D0%B0:img:servo:brushless inside2. картинка код для сервопривода arduino. картинка %D1%80%D0%BE%D0%B1%D0%BE%D1%82%D0%BE%D1%82%D0%B5%D1%85%D0%BD%D0%B8%D0%BA%D0%B0:img:servo:brushless inside2. Вы наверняка работали с сервоприводами из под Arduino и знаете, как это выглядит: сервоприводу можно приказать повернуться на угол, и он с максимальной скоростью начнёт поворачиваться на этот угол. Это очень неправильно применять в реальных устройствах, потому что создаются лишние нагрузки и растёт потребление тока (большой стартовый ток). Можно ли крутить серво плавно? Можно! Я сделал библиотеку ServoSmooth, которая в этом поможет.

Сервоприводы с бесколлекторным мотором появились сравнительно недавно. Преимущества те же что и у остальных бесколлекторных моторов: нет щёток, а значит они не создают сопротивление вращению и не изнашиваются, скорость и момент выше при токопотреблении равном коллекторным моторам. Сервоприводы с бесколлекторным мотором — самые дорогие сервоприводы, однако при этом они обладают лучшими характеристиками по сравнению с сервоприводами с другими типами моторов.

Сервопривод постоянного вращения

Сервоприводы обычно имеют ограниченный угол вращения 180 градусов, их так и называют «сервопривод 180°».

Но существуют сервоприводы с неограниченным углом поворота оси. Это сервоприводы постоянного вращения или «сервоприводы 360°».

Функция ArduinoСервопривод 180°Сервопривод 360°
Servo.write(0)Крайне левое положениеПолный ход в одном направлении
Servo.write(90)Середнее положениеОстановка сервопривода
Servo.write(180)Крайне правое положениеПолный ход в обратном направлении

Для иллюстрации работы с сервами постоянного вращения мы собрали двух мобильных ботов — на Arduino Uno и Iskra JS. Инструкции по сборке и примеры скетчей смотрите в статье собираем ИК-бота.

Примеры работы с Arduino

Схема подключения

Многие сервоприводы могут быть подключены к Arduino непосредственно. Для этого от них идёт шлейф из трёх проводов:

Для подключения к Arduino будет удобно воспользоваться платой-расширителем портов, такой как Troyka Shield. Хотя с несколькими дополнительными проводами можно подключить серву и через breadboard или непосредственно к контактам Arduino.

Ограничение по питанию

Обычный хобби-сервопривод во время работы потребляет более 100 мА. При этом Arduino способно выдавать до 500 мА. Поэтому, если вам в проекте необходимо использовать мощный сервопривод, есть смысл задуматься о выделении его в контур с дополнительным питанием.

Рассмотрим на примере подключения 12V сервопривода: код для сервопривода arduino. %D1%80%D0%BE%D0%B1%D0%BE%D1%82%D0%BE%D1%82%D0%B5%D1%85%D0%BD%D0%B8%D0%BA%D0%B0:%D1%81%D0%B5%D1%80%D0%B2%D0%BE%D0%BF%D1%80%D0%B8%D0%B2%D0%BE%D0%B4%D1%8B:powerservo. код для сервопривода arduino фото. код для сервопривода arduino-%D1%80%D0%BE%D0%B1%D0%BE%D1%82%D0%BE%D1%82%D0%B5%D1%85%D0%BD%D0%B8%D0%BA%D0%B0:%D1%81%D0%B5%D1%80%D0%B2%D0%BE%D0%BF%D1%80%D0%B8%D0%B2%D0%BE%D0%B4%D1%8B:powerservo. картинка код для сервопривода arduino. картинка %D1%80%D0%BE%D0%B1%D0%BE%D1%82%D0%BE%D1%82%D0%B5%D1%85%D0%BD%D0%B8%D0%BA%D0%B0:%D1%81%D0%B5%D1%80%D0%B2%D0%BE%D0%BF%D1%80%D0%B8%D0%B2%D0%BE%D0%B4%D1%8B:powerservo. Вы наверняка работали с сервоприводами из под Arduino и знаете, как это выглядит: сервоприводу можно приказать повернуться на угол, и он с максимальной скоростью начнёт поворачиваться на этот угол. Это очень неправильно применять в реальных устройствах, потому что создаются лишние нагрузки и растёт потребление тока (большой стартовый ток). Можно ли крутить серво плавно? Можно! Я сделал библиотеку ServoSmooth, которая в этом поможет.

Ограничение по количеству подключаемых сервоприводов

На большинстве плат Arduino библиотека Servo поддерживает управление не более 12 сервоприводами, на Arduino Mega это число вырастает до значения 48. При этом есть небольшой побочный эффект использования этой библиотеки: если вы работаете не с Arduino Mega, то становится невозможным использовать функцию analogWrite() на 9 и 10 контактах независимо от того, подключены сервоприводы к этим контактам или нет. На Arduino Mega можно подключить до 12 сервоприводов без нарушения функционирования ШИМ/PWM, при использовании большего количества сервоприводов мы не сможем использовать analogWrite() на 11 и 12 контактах.

Пример использования библиотеки Servo

По аналогии подключим 2 сервопривода

Библиотека Servo не совместима с библиотекой VirtualWire для работы с приёмником и передатчиком на 433 МГц.

Альтернативная библиотека Servo2

Библиотеки для управления сервоприводами (Servo) и для работы с приёмниками / передатчиками на 433 МГц VirtualWire используют одно и то же прерывание. Это означает, что их нельзя использовать в одном проекте одновременно. Существует альтернативная библиотека для управления сервомоторами — Servo2.

Все методы библиотеки Servo2 совпадают с методами Servo.

Пример использования библиотеки Servo

Примеры работы с Espruino

Примеры работы с Raspberry Pi

Вывод

Сервоприводы бывают разные, одни получше — другие подешевле, одни надёжнее — другие точнее. И перед тем, как купить сервопривод, стоит иметь в виду, что он может не обладать лучшими характеристиками, главное, чтобы подходил для вашего проекта. Удачи в ваших начинаниях!

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *