С чем реагирует магний все реакции
Оксид магния: способы получения и химические свойства
Оксид магния MgO — бинарное неорганическое вещество . Белый, тугоплавкий, термически устойчивый, не реагирует с водой. Проявляет основные свойства.
Относительная молекулярная масса Mr = 40,3; относительная плотность для тв. и ж. состояния d = 3,62; tпл ≈ 2825º C; tкип = 3600º C.
Способ получения
1. Оксид магния получается при разложении карбоната магния при температуре 350 — 650º C. В результате разложения образуется оксид магния и углекислый газ:
2. В результате разложения нитрата магния при температуре выше 300º С образуется оксид магния, оксид азота (IV) и кислород:
3. Гидроксид магния разлагается при 350-480º С с образованием оксида магния и воды:
4. Оксид магния можно получить путем разложения сульфата магния при температуре выше 1200º C, образуется оксид магния, кислород и оксид серы (IV):
5. Оксид магния можно получить сжиганием магния в в кислороде при 600 — 650º С:
2Mg + O2 = 2MgO
Химические свойства
1. Оксид магния реагирует с простыми веществами :
1.1. В результате реакции между оксидом магния и кальцием при температуре выше 400º С образуется магний и оксид кальция:
MgO + Ca = CaO + Mg
1.2. Оксид магния реагирует с углеродом при температуре выше 2000º С и образует магний и угарный газ:
MgO + C = Mg + CO
2. Оксид магния взаимодействует со сложными веществами:
2.1.1. О ксид магния с разбавленной соляной кислотой образует хлорид магния и воду:
MgO + 2HCl = MgCl2 + H2O
2.3. Оксид магния взаимодействует с водой при 100 — 125º С, образуя гидроксид магния:
2.2.2. Химические свойства металлов IIA группы.
IIA группа содержит только металлы – Be (бериллий), Mg (магний), Ca (кальций), Sr (стронций), Ba (барий) и Ra (радий). Химические свойства первого представителя этой группы — бериллия — наиболее сильно отличаются от химических свойств остальных элементов данной группы. Его химические свойства во многом даже более схожи с алюминием, чем с остальными металлами IIA группы (так называемое «диагональное сходство»). Магний же по химическим свойствами тоже заметно отличается от Ca, Sr, Ba и Ra, но все же имеет с ними намного больше сходных химических свойств, чем с бериллием. В связи со значительным сходством химических свойств кальция, стронция, бария и радия их объединяют в одно семейство, называемое щелочноземельными металлами.
Вследствие особенностей электронного строения металлов IIA группы, данные элементы, помимо нуля, способны иметь только одну единственную степень окисления, равную +2. Простые вещества, образованные элементами IIA группы, при участии в любых химических реакциях способны только окисляться, т.е. отдавать электроны:
Ме 0 – 2e — → Ме +2
Кальций, стронций, барий и радий обладают крайне высокой химической активностью. Простые вещества, образованные ими, являются очень сильными восстановителями. Также сильным восстановителем является магний. Восстановительная активность металлов подчиняется общим закономерностям периодического закона Д.И. Менделеева и увеличивается вниз по подгруппе.
Взаимодействие с простыми веществами
с кислородом
Без нагревания бериллий и магний не реагируют ни с кислородом воздуха, ни с чистым кислородом ввиду того, что покрыты тонкими защитными пленками, состоящими соответственно из оксидов BeO и MgO. Их хранение не требует каких-либо особых способов защиты от воздуха и влаги, в отличие от щелочноземельных металлов, которые хранят под слоем инертной по отношению к ним жидкости, чаще всего керосина.
Be, Mg, Ca, Sr при горении в кислороде образуют оксиды состава MeO, а Ba – смесь оксида бария (BaO) и пероксида бария (BaO2):
Следует отметить, что при горении щелочноземельных металлов и магния на воздухе побочно протекает также реакция этих металлов с азотом воздуха, в результате которой, помимо соединений металлов с кислородом, образуются также нитриды c общей формулой Me3N2.
с галогенами
Бериллий реагирует с галогенами только при высоких температурах, а остальные металлы IIA группы — уже при комнатной температуре:
с неметаллами IV–VI групп
Все металлы IIA группы реагируют при нагревании со всеми неметаллами IV–VI групп, но в зависимости от положения металла в группе, а также активности неметаллов требуется различная степень нагрева. Поскольку бериллий является среди всех металлов IIA группы наиболее химически инертным, при проведении его реакций с неметаллами требуется существенно большая температура.
Остальные металлы II А группы образуют с углеродом ацетилениды:
С кремнием металлы IIA группы образуют силициды — соединения вида Me2Si, с азотом – нитриды (Me3N2), фосфором – фосфиды (Me3P2):
с водородом
Все щелочноземельные металлы реагируют при нагревании с водородом. Для того чтобы магний прореагировал с водородом, одного нагрева, как в случае со щелочноземельными металлами, недостаточно, требуется, помимо высокой температуры, также и повышенное давление водорода. Бериллий не реагирует с водородом ни при каких условиях.
Взаимодействие со сложными веществами
с водой
Все щелочноземельные металлы активно реагируют с водой с образованием щелочей (растворимых гидроксидов металлов) и водорода. Магний реагирует с водой лишь при кипячении вследствие того, что при нагревании в воде растворяется защитная оксидная пленка MgO. В случае бериллия защитная оксидная пленка очень стойкая: с ним вода не реагирует ни при кипячении, ни даже при температуре красного каления:
c кислотами-неокислителями
Все металлы главной подгруппы II группы реагируют с кислотами-неокислителями, поскольку находятся в ряду активности левее водорода. При этом образуются соль соответствующей кислоты и водород. Примеры реакций:
c кислотами-окислителями
− разбавленной азотной кислотой
С разбавленной азотной кислотой реагируют все металлы IIA группы. При этом продуктами восстановления вместо водорода (как в случае кислот-неокислителей) являются оксиды азота, преимущественно оксид азота (I) (N2O), а в случае сильно разбавленной азотной кислоты – нитрат аммония (NH4NO3):
− концентрированной азотной кислотой
Концентрированная азотная кислота при обычной (или низкой) температуре пассивирует бериллий, т.е. в реакцию с ним не вступает. При кипячении реакция возможна и протекает преимущественно в соответствии с уравнением:
Магний и щелочноземельные металлы реагируют с концентрированной азотной кислотой с образованием большого спектра различных продуктов восстановления азота.
− концентрированной серной кислотой
Бериллий пассивируется концентрированной серной кислотой, т.е. не реагирует с ней в обычных условиях, однако реакция протекает при кипячении и приводит к образованию сульфата бериллия, диоксида серы и воды:
Барий также пассивируется концентрированной серной кислотой вследствие образования нерастворимого сульфата бария, но реагирует с ней при нагревании, сульфат бария растворяется при нагревании в концентрированной серной кислоте благодаря его превращению в гидросульфат бария.
Остальные металлы главной IIA группы реагируют с концентрированной серной кислотой при любых условиях, в том числе на холоду. Восстановление серы происходит преимущественно до сероводорода:
с щелочами
Магний и щелочноземельные металлы со щелочами не взаимодействуют, а бериллий легко реагирует как растворами щелочей, так и с безводными щелочами при сплавлении. При этом при осуществлении реакции в водном растворе в реакции участвует также и вода, а продуктами являются тетрагидроксобериллаты щелочных или щелочноземельных металлов и газообразный водород:
При осуществлении реакции с твердой щелочью при сплавлении образуются бериллаты щелочных или щелочноземельных металлов и водород
с оксидами
Щелочноземельные металлы, а также магний могут восстанавливать менее активные металлы и некоторые неметаллы из их оксидов при нагревании, например:
Метод восстановления металлов из их оксидов магнием называют магниетермией.
Магний и его реакции.
Этот металл один из самых легких и химически активных,
Магний активно горит на воздухе, излучая большое количество света и ультрафиолета. Температура горения магния в воздухе более 2000С.
Магний это самый активный металл который можно держать в руке не получая при этом химического ожога. Мы отломали магниевые ленты что бы показать насколько горит ярко магний в солнечный день.
Чем потушить магний.
Из-за высокой активности, большое количество горящего магния нельзя тушить обычными средствами пожаротушения, песком, водой, и огнетушитилями.
Мы вам хотим показать реакцию горения смеси магния и песка. Строек поблизости нет, и единственный доступный песок был в песочнике.
Просеяв песок мы добавили крупный порошок магния.
Магний прекрасно горит в смеси с песком. В процессе горения выделяется очень много тепла, и образуется чистый кремний. Так получают кремний.
Магний активно реагирует с серой. В ходе реакции образуется сульфид магния.
Мы взяли использованный отечественный магниевый анод от водонагревателя или бойлера,. напилили с него металлический порошок и подожгли в пламени горелки.
Для сравнения взяли китайский слиток магния с алиэкспресса, и тоже напилили с него порошок.
Оказалось что магний из Китая лучше отечественного, порошок магний при горении дает большие огненные вспышки.
Всем спасибо за просмотр, Если вам понравилось наше видео поставьте плюсик,
Лига Химиков
1.2K поста 10.6K подписчиков
Правила сообщества
Старайтесь выбирать качественный контент и не ставьте теги моё на копипасты
Посты с просьбой решения домашнего задания переносятся в общую ленту
1. Оскорблять пользователей.
2. Постить материал далеко не по теме и непотребный контент (в остальном грамотно используйте теги)
3. Рекламировать сомнительные сайты и услуги коммерческого характера
Кристаллы ортофосфата аммония-магния
Ортофосфат аммония-магния — нерастворимая в воде комплексная соль аммония, магния и ортофосфорной кислоты, образует кристаллогидраты специфической формы. За счёт этого служит простейшим качественным индикатором ионов магния в растворе.
Подобные и прочие посты также на странице ВК:
Фотографии кристаллов других солей:
«Не шутите с фейерверком». Причиной взрыва, в результате которого пострадал целый квартал Лос- Анджелеса, стала ошибка саперов
На пресс- конференции 19 июля 2021 шеф полиции Лос- Анджелеса Майкл Мур признал, что причиной мощного взрыва, сотрясшего 30 июня южную часть Лос- Анджелеса, послужила ошибка саперов LAPD.
30 июня 2021 г. во дворе дома некоего Артуро Сеха (27 лет) на 27-й улице полицией было обнаружено 32 000 фунтов (14 515 кг) не соответствующих требованиям закона пиротехнических изделий. Одна часть пиротехники хранилась под брезентом в ящиках с маркировкой «Made in China», составленных в штабели высотой от 8 до 10 футов (2,4-3 м); другая же- просто под открытым небом (включая 140 самодельных взрывпакетов типа М80, огнепроводные шнуры и компоненты для изготовления взрывчатых веществ).
После обнаружения такого количества взрывоопасной продукции на место была вызвана группа разминирования Департамента полиции Лос- Анджелеса. Для вывоза большей части пиротехники потребовалось 3 грузовика и 1 прицеп; однако в ходе операции
саперы пришли к выводу, что часть изъятого (280 взрывпакетов М80 и 40 еще бОльших устройств, по размеру схожих с банкой газировки) слишком опасна для транспортировки. Исходя из этого, было решено уничтожить представляющие опасность устройства на месте, используя передвижной взрывозащитный контейнер сферической формы, базирующийся на шасси грузовика. Загруженную в контейнер пиротехнику подорвали около 19:30- однако, как говорится, «что-то пошло не так. ».
Видео № 1 (вид сверху).
Видео № 2 (вид сбоку).
В итоге, сам контейнер был уничтожен взрывом- как и грузовик, на котором он располагался.
Фото уничтоженного взрывом грузовика.
Более того- взрывом были повреждены 22 жилых строения, 13 бизнес- строений и 37 автомобилей.
Одно из зданий, поврежденных взрывом.
Примечание. Необходимо заметить, что перед взрывом большинство жителей близлежащих домов было эвакуировано- в противном случае пострадавших было бы еще больше.
После произошедшего начальник полиции Лос- Анджелеса Мур заявил, что «все положенные процедуры были соблюдены, но в этом контейнере произошло нечто такое, чего не должно было произойти, и мы пока не знаем почему» Также, по его словам, масса ВВ, помещенного в контейнер, не превышала 10 фунтов (
4,5 кг), в то время как устройство было рассчитано на гораздо большее количество. В последующем заявлении масса ВВ в контейнере была скорректирована до 16,5 фунтов (
7,5 кг), но это все равно было меньше рассчитанного «предела прочности» оборудования.
Однако расследование, к которому в настоящий момент привлечены сотрудники ATF и ФБР, выявило, что с «соблюдением процедур» все оказалось не так гладко. Согласно заявления самого Мура на пресс- конференции, причиной разрушений стало то, что саперы ошиблись, оценивая массу пиротехнических изделий «на глазок», и поместили в контейнер пиротехнику с общей массой ВВ около 42 фунтов (
19 кг), в то время как контейнер был рассчитан на ВВ подобного типа с массой не более 25 фунтов (
В настоящий момент руководитель группы разминирования и все ее члены отстранены от работы- до окончания расследования. Кроме того, шеф полиции Мур принес свои извинения «всем жителям, владельцам бизнеса и их клиентам, пострадавшим при инциденте».
Домовладелец Артуро Сеха 3 июля был арестован и обвинен в незаконном владении и перевозке взрывчатых веществ. Кроме того, ему грозит обвинение в том, что он подверг опасности жизнь несовершеннолетнего (в доме находился его 10- летний брат).
Сразу после пресс- конференции шефа полиции член городского совета Лос-Анджелеса Куррен Прайс, отвечая на вопросы, назвал этот инцидент «безусловно, одной из крупнейших ошибок полиции Лос-Анджелеса в новейшей истории».
Пресс- конференция Майкла Мура. Видео на английском, однако в нем хорошо продемонстрированы следующие моменты- количество обнаруженной пиротехники, ее виды, нанесенные разрушения и эвакуация пострадавших.
Реакции, взаимодействие магния. Уравнения реакции магния с веществами
Реакции, взаимодействие магния. Уравнения реакции магния с веществами.
Магний реагирует, взаимодействует с неметаллами, металлами, полуметаллами, оксидами, кислотами, солями и пр. веществами.
Реакции, взаимодействие магния с неметаллами. Уравнения реакции:
Реакция взаимодействия водорода и магния происходит с образованием гидрида магния. Реакция протекает при избыточном давлении.
Реакция взаимодействия магния и бора происходит с образованием диборида магния.
3. Реакция взаимодействия магния и фосфора:
Реакция взаимодействия магния и фосфора происходит с образованием фосфида магния.
Реакция взаимодействия магния и кремния происходит с образованием силицида магния. Реакция протекает при сплавлении реакционной смеси.
2Mg + O2 → 2MgO (t = 600-650 °C).
Реакция взаимодействия магния и азота происходит с образованием нитрида магния.
Реакция взаимодействия магния и хлора происходит с образованием хлорида магния.
Реакции, взаимодействие магния с металлами и полуметаллами. Уравнения реакции:
Реакция взаимодействия висмута и магния происходит с образованием висмутида магния.
Реакция взаимодействия сурьмы и магния происходит с образованием антимонида магния.
Pd + 3Mg → PdMg3 (t = 1130 °C).
Реакция взаимодействия палладия и магния происходит с образованием палладийтримагния.
Реакции, взаимодействие магния с оксидами. Уравнения реакции:
1. Реакция взаимодействия магния и воды:
2. Реакция взаимодействия магния и оксида углерода (IV):
CO2 + 2Mg → 2MgO + C (t = 500 °C).
3. Реакция взаимодействия магния и оксида азота (IV):
Реакция взаимодействия магния и оксида азота (IV) происходит с образованием нитрата магния и оксида азота (II). Реакция протекает в вакууме, в этилацетате.
4. Реакция взаимодействия магния и оксида лития:
Li2O + Mg → 2Li + MgO (t > 800 °C).
5. Реакция взаимодействия магния и оксида бериллия:
BeO + Mg → MgO + Be (t = 700-800 °C).
6. Реакция взаимодействия магния и оксида кремния:
SiO2 + 4Mg → Mg2Si + 2MgO (t атмосфере водорода.
7. Реакция взаимодействия магния и оксида бора:
Реакция взаимодействия магния и оксида бора происходит с образованием оксида магния и борида магния.
Щелочноземельные металлы и их соединения
Элементы II группы главной подгруппы
Элементы II группы главной подгруппы
Положение в периодической системе химических элементов
Щелочноземельные металлы расположены во второй группе главной подгруппе периодической системы химических элементов Д.И. Менделеева (или просто во 2 группе в длиннопериодной форме ПСХЭ). На практике к щелочноземельным металлам относят только кальций Ca, стронций Sr, барий Ba и радий Ra. Бериллий Be по свойствам больше похож на алюминий, магний Mg проявляет некоторые свойства щелочноземельных металлов, но в целом отличается от них. Однако, согласно номенклатуре ИЮПАК, щелочноземельными принято считать все металлы II группы главной подгруппы.
Электронное строение и закономерности изменения свойств
Рассмотрим некоторые закономерности изменения свойств щелочноземельных металлов.
Физические свойства
Все щелочноземельные металлы — вещества серого цвета и гораздо более твердые, чем щелочные металлы.
Бериллий Be устойчив на воздухе. Магний и кальций (Mg и Ca) устойчивы в сухом воздухе. Стронций Sr и барий Ba хранят под слоем керосина.
Кристаллическая решетка щелочноземельных металлов в твёрдом состоянии — металлическая. Следовательно, они обладают высокой тепло- и электропроводимостью. Кипят и плавятся при высоких температурах.
Нахождение в природе
Как правило, щелочноземельные металлы в природе присутствуют в виде минеральных солей: хлоридов, бромидов, йодидов, карбонатов, нитратов и др. Основные минералы, в которых присутствуют щелочноземельные металлы:
Доломит — CaCO3 · MgCO3 — карбонат кальция-магния.
Магнезит MgCO3 – карбонат магния.
Кальцит CaCO3 – карбонат кальция.
Гипс CaSO4 · 2H2O – дигидрат сульфата кальция.
Барит BaSO4 — сульфат бария.
Витерит BaCO3 – карбонат бария.
Способы получения
Магний получают электролизом расплавленного карналлита или хлорида магния с добавками хлорида натрия при 720–750°С:
или восстановлением прокаленного доломита в электропечах при 1200–1300°С:
2(CaO · MgO) + Si → 2Mg + Ca2SiO4
Кальций получают электролизом расплавленного хлорида кальция с добавками фторида кальция:
Барий получают восстановлением оксида бария алюминием в вакууме при 1200 °C:
4BaO+ 2Al → 3Ba + Ba(AlO2)2
Качественные реакции
Цвет пламени:
Ca — кирпично-красный
Sr — карминово-красный (алый)
Ba — яблочно-зеленый
Качественная реакция на ионы магния : взаим одействие с щелочами. Ионы магния осаждаются щелочами с образованием белого осадка гидроксида магния:
Mg 2+ + 2OH — → Mg(OH)2↓
Качественная реакция на ионы кальция, стронция, бария : взаим одействие с карбонатами. При взаимодействии солей кальция, стронция и бария с карбонатами выпадает белый осадок карбоната кальция, стронция или бария :
Ca 2+ + CO3 2- → CaCO3↓
Ba 2+ + CO3 2- → BaCO3↓
Качественная реакция на ионы стронция и бария : взаим одействие с карбонатами. При взаимодействии солей стронция и бария с сульфатами выпадает белый осадок сульфата бария и сульфата стронция :
Ba 2+ + SO4 2- → BaSO4↓
Sr 2+ + SO4 2- → SrSO4↓
Также осадки белого цвета образуются при взаимодействии солей кальция, стронция и бария с сульфитами и фосфатами.
Химические свойства
1.1. Щелочноземельные металлы реагируют с галогенами с образованием галогенидов при нагревании.
1.2. Щелочноземельные металлы реагируют при нагревании с серой и фосфором с образованием сульфидов и фосфоридов.
Ca + S → CaS
Кальций взаимодействует с фосфором с образованием фосфидов:
1.4. С азотом магний взаимодействует при комнатной температуре с образованием нитрида:
Остальные щелочноземельные металлы реагируют с азотом при нагревании.
1.5. Щелочноземельные металлы реагируют с углеродом с образованием карбидов, преимущественно ацетиленидов.
Ca + 2C → CaC2
Бериллий реагирует с углеродом при нагревании с образованием карбида — метанида:
2Be + C → Be2C
1.6. Бериллий сгорает на воздухе при температуре около 900°С:
2Be + O2 → 2BeO
Магний горит на воздухе при 650°С с выделением большого количества света. При этом образуются оксиды и нитриды:
2Mg + O2 → 2MgO
Щелочноземельные металлы горят на воздухе при температуре около 500°С, в результате также образуются оксиды и нитриды.
Видеоопыт : горение кальция на воздухе можно посмотреть здесь.
2. Щелочноземельные металлы взаимодействуют со сложными веществами:
2 Ca 0 + 2 H2 + O = 2 Ca + ( OH)2 + H2 0
2.2. Щелочноземельные металлы взаимодействуют с минеральными кислотами (с соляной, фосфорной, разбавленной серной кислотой и др.). При этом образуются соль и водород.
2Mg + 2HCl → MgCl2 + H2↑
2.3. При взаимодействии щелочноземельных металлов с концентрированной серной кислотой образуется сера.
При взаимодействии щелочноземельных металлов с очень разбавленной азотной кислотой образуется нитрат аммония:
2.5. Щелочноземельные металлы могут восстанавливать некоторые неметаллы (кремний, бор, углерод) из оксидов.
2Ca + SiO2 → 2CaO + Si
2Mg + CO2 → 2MgO + C
Ca + CuCl2 → CaCl2 + Cu
Оксиды щелочноземельных металлов
Способы получения
1. О ксиды щелочноземельных металлов можно получить из простых веществ — окислением металлов кислородом :
2Ca + O2 → 2CaO
3. Оксиды магния и бериллия можно получить термическим разложением гидроксидов :
Химические свойства
1. Оксиды кальция, стронция, бария и магния взаимодействуют с кислотными и амфотерными оксидами :
2. Оксиды щелочноземельных металлов взаимодействуют с кислотами с образованием средних и кислых солей (с многоосновными кислотами).
CaO + 2HCl → CaCl2 + H2O
3. Оксиды кальция, стронция и бария активно взаимодействуют с водой с образованием щелочей.
CaO + H2O → 2Ca(OH)2
Оксид магния реагирует с водой при нагревании:
MgO + H2O → Mg(OH)2
Оксид бериллия не взаимодействует с водой.
4. Оксид бериллия взаимодействует с щелочами и основными оксидами.
При взаимодействии оксида бериллия с щелочами в расплаве или с основными оксидами образуются соли-бериллаты.
При взаимодействии оксида бериллия с щелочами в растворе образуются комплексные соли.
Гидроксиды щелочноземельных металлов
Способы получения
Оксид магния взаимодействует с водой только при нагревании:
2. Гидроксиды кальция, стронция и бария получают при взаимодействии соответствующих металлов с водой.
Магний взаимодействует с водой только при кипячении:
Химические свойства
1. Гидроксиды кальция, стронция и бария реагируют с всеми кислотами (и сильными, и слабыми). При этом образуются средние или кислые соли, в зависимости от соотношения реагентов.
Гидроксид магния взаимодействует только с сильными кислотами.
в растворе образуется комплексная соль — тетрагидроксоалюминат:
4. Гидроксиды кальция, стронция и бария взаимодействуют с кислыми солями. При этом образуются средние соли, или менее кислые соли.
Например : гидроксид кальция реагирует с гидрокарбонатом кальция с образованием карбоната кальция:
5. Гидроксиды кальция, стронция и бария взаимодействуют с простыми веществами-неметаллами (кроме инертных газов, азота, кислорода, водорода и углерода). Взаимодействие щелочей с неметаллами подробно рассмотрено в статье про щелочные металлы.
В растворе образуются комплексная соль и водород:
7. Гидроксиды кальция, стронция и бария вступают в обменные реакции с растворимыми солями. Как правило, с этими гидроксидами реагируют растворимые соли тяжелых металлов (в ряду активности расположены правее алюминия), а также растворимые карбонаты, сульфиты, силикаты, и, для гидроксидов стронция и бария — растворимые сульфаты.
Также с гидроксидами кальция, стронция и бария взаимодействуют соли аммония.
8. Гидроксид кальция разлагается при нагревании до 580 о С, гидроксиды магния и бериллия разлагаются при нагревании:
Ba(OH)2 ↔ Ba 2+ + 2OH —
Гидроксид магния — нерастворимое основание. Гидроксид бериллия проявляет амфотерные свойства.
При взаимодействии гидроксида бериллия с избытком раствора щелочи образуется комплексная соль:
Соли щелочноземельных металлов
Нитраты щелочноземельных металлов
Нитраты кальция, стронция и бария при нагревании разлагаются на нитриты и кислород. Исключение — нитрат магния. Он разлагается на оксид магния, оксид азота (IV) и кислород.
Карбонаты щелочноземельных металлов
1. Карбонаты щелочноземельных металлов при нагревании разлагаются на оксид и углекислый газ.
2. Карбонаты щелочноземельных металлов под действием воды и углекислого газа превращаются в растворимые в воде гидрокарбонаты.
3. Карбонаты щелочноземельных металлов взаимодействуют с более сильными кислотами с образованием новой соли, углекислого газа и воды.
Более сильные кислоты вытесняют менее сильные из солей.
4. Менее летучие оксиды вытесняют углекислый газ из карбонатов при сплавлении. К менее летучим, чем углекислый газ, оксидам относятся твердые оксиды — оксид кремния (IV), оксиды амфотерных металлов.
Менее летучие оксиды вытесняют более летучие оксиды из солей при сплавлении.
Жесткость воды
Постоянная и временная жесткость
Жесткость воды — это характеристика воды, обусловленная содержанием в ней растворенных солей щелочноземельных металлов, в основном кальция и магния (солей жесткости).
Временная (карбонатная) жесткость обусловлена присутствием гидрокарбонатов кальция Ca(HCO3)2 и магния Mg(HCO3)2 в воде.
Постоянная (некарбонатная) жесткость обусловлена присутствием солей, не выделяющихся при кипячении из раствора: хлоридов (CaCl2) и сульфатов (MgSO4) кальция и магния.
Способы устранения жесткости
Существуют химические и физические способы устранения жесткости. Химические способы устранения временной жесткости:
1. Кипячение. При кипячении гидрокарбонаты кальция и магния распадаются на нерастворимые карбонаты, углекислый газ и воду:
2. Добавление извести (гидроксида кальция). При добавлении щелочи растворимые гидрокарбонаты переходят в нерастворимые карбонаты:
Химические способы устранения постоянной жесткости — реакции ионного обмена, которые позволяют осадить ионы кальция и магния из раствора:
1. Добавление соды (карбоната натрия). Карбонат натрия связывает ионы кальция и магния в нерастворимые карбонаты:
CaCl2 + Na2CO3 → CaCO3↓+ 2NaCl
2. Добавление фосфатов. Фосфаты также связывают ионы кальция и магния: