109 в двоичном коде
Перевести число 109 из десятичной системы в двоичную
Задача: перевести число 109 из десятичной системы счисления в двоичную.
Для того, чтобы перевести число 109 из десятичной системы счисления в двоичную, необходимо осуществить последовательное деление на 2, то тех пор пока остаток не будет меньше чем 2.
— | 109 | 2 | ||
108 | — | 54 | 2 | |
1 | 54 | — | 27 | 2 |
0 | 26 | — | 13 | 2 |
1 | 12 | — | 6 | 2 |
1 | 6 | — | 3 | 2 |
0 | 2 | 1 | ||
1 |
Полученные остатки записываем в обратном порядке, таким образом:
Подробнее о том, как переводить числа из десятичной системы в двоичную, смотрите здесь.
Перевод чисел из одной системы счисления в другую
Данный конвертер переводит числа между наиболее популярными системами счисления: десятичной, двоичной, восьмеричной, шестнадцатеричной.
Существуют и другие системы счисления, но мы не стали включать их в конвертер из-за низкой популярности.
Для указания системы счисления при записи числа используется нижний индекс, который ставится после числа:
20010 = 110010002 = 3108 = C816
Кратко об основных системах счисления
Десятичная система счисления. Используется в повседневной жизни и является самой распространенной. Все числа, которые нас окружают представлены в этой системе. В каждом разряде такого числа может использоваться только одна цифра от 0 до 9.
Двоичная система счисления. Используется в вычислительной технике. Для записи числа используются цифры 0 и 1.
Восьмеричная система счисления. Также иногда применяется в цифровой технике. Для записи числа используются цифры от 0 до 7.
Перевод в десятичную систему счисления
Перевод из десятичной системы счисления в другие
Делим десятичное число на основание системы, в которую хотим перевести и записываем остатки от деления. Запишем полученные остатки в обратном порядке и получим искомое число.
Переведем число 37510 в восьмеричную систему:
Перевод из двоичной системы в восьмеричную
Так же как и в первом способе разбиваем число на группы. Но вместо преобразований в скобках просто заменим полученные группы (триады) на соответствующие цифры восьмеричной системы, используя таблицу триад:
Перевод из двоичной системы в шестнадцатеричную
Также как и в первом способе разбиваем число на группы по 4 цифры. Заменим полученные группы (тетрады) на соответствующие цифры шестнадцатеричной системы, используя таблицу тетрад:
Тетрада | 0000 | 0001 | 0010 | 0011 | 0100 | 0101 | 0110 | 0111 | 1000 | 1001 | 1010 | 1011 | 1100 | 1101 | 1110 | 1111 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Цифра | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | A | B | C | D | E | F |
Перевод из восьмеричной системы в двоичную
Каждый разряд восьмеричного числа будем делить на 2 и записывать остатки в обратном порядке, формируя группы по 3 разряда двоичного числа. Если в группе получилось меньше 3 разрядов, тогда дополняем нулями. Записываем все группы по порядку, отбрасываем ведущие нули, если имеются, и получаем двоичное число.
Используем таблицу триад:
Каждую цифру исходного восьмеричного числа заменяется на соответствующие триады. Ведущие нули самой первой триады отбрасываются.
Перевод из шестнадцатеричной системы в двоичную
Аналогично переводу из восьмеричной в двоичную, только группы по 4 разряда.
Используем таблицу тетрад:
Цифра | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | A | B | C | D | E | F |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Тетрада | 0000 | 0001 | 0010 | 0011 | 0100 | 0101 | 0110 | 0111 | 1000 | 1001 | 1010 | 1011 | 1100 | 1101 | 1110 | 1111 |
Каждую цифру исходного числа заменяется на соответствующие тетрады. Ведущие нули самой первой тетрады отбрасываются.
Перевод из восьмеричной системы в шестнадцатеричную и наоборот
Такую конвертацию можно осуществить через промежуточное десятичное или двоичное число. То есть исходное число сначала перевести в десятичное (или двоичное), и затем полученный результат перевести в конечную систему счисления.
Перевод чисел из одной системы счисления в любую другую онлайн
Ура. Вам стало интересно как получилось данное число
Вы ввели число:351010 в десятичной системе счисления и хотите перевести его в двоичную.
Переведем 351010 в двоичную систему вот так:
Целая часть числа находится делением на основание новой
3510 | 2 | ||||||||||
-3510 | 1755 | 2 | |||||||||
0 | -1754 | 877 | 2 | ||||||||
1 | -876 | 438 | 2 | ||||||||
1 | -438 | 219 | 2 | ||||||||
0 | -218 | 109 | 2 | ||||||||
1 | -108 | 54 | 2 | ||||||||
1 | -54 | 27 | 2 | ||||||||
0 | -26 | 13 | 2 | ||||||||
1 | -12 | 6 | 2 | ||||||||
1 | -6 | 3 | 2 | ||||||||
0 | -2 | 1 | |||||||||
1 | |||||||||||
Получилось: 351010 = 1101101101102
Результат перевода:
351010 = 1101101101102
Постоянная ссылка на результат этого расчета
Калькулятор перевода чисел имеет одно поле для ввода. В это поле необходимо ввести число которое Вы хотите перевести.
После этого Вам обязательно нужно указать в какой системе счисления Вы его ввели. Для этого под полем ввода есть графа «Его система счисления».
После нажмите кнопку «ПЕРЕВЕСТИ» и результат появится в соответствующем поле. Если Вы хотите получить подробный ход решения, то нажмите на соответствующую ссылку.
Научиться переводить число из одной системы счисления в другую очень просто.
Любое число может быть легко переведено в десятичную систему по следующему алгоритму:
Каждая цифра числа должна быть умножена на основание системы счисления этого числа возведенное в степень равное позиции текущей цифры в числе справа налево, причём счёт начинается с 0.
Перевод чисел из одной системы счисления в любую другую онлайн
Ура. Вам стало интересно как получилось данное число
Вы ввели число:71.510 в десятичной системе счисления и хотите перевести его в 7-ричную.
Переведем 71.510 в 7-ричную систему вот так:
Целая часть числа находится делением на основание новой
71 | 7 | |
-70 | 10 | 7 |
1 | -7 | 1 |
3 | ||
Получилось: 7110 = 1317
Дробная часть числа находится умножением на основание новой
0 | .5 |
. | 7 |
3 | 5 |
7 | |
3 | 5 |
7 | |
3 | 5 |
7 | |
3 | 5 |
7 | |
3 | 5 |
7 | |
3 | 5 |
7 | |
3 | 5 |
7 | |
3 | 5 |
7 | |
3 | 5 |
7 | |
3 | 5 |
7 | |
3 | 5 |
7 |
Получилось: 0.510 = 0.333333333337
Сложим вместе целую и дробную часть вот так:
Результат перевода:
71.510 = 131.333333333337
Постоянная ссылка на результат этого расчета
Калькулятор перевода чисел имеет одно поле для ввода. В это поле необходимо ввести число которое Вы хотите перевести.
После этого Вам обязательно нужно указать в какой системе счисления Вы его ввели. Для этого под полем ввода есть графа «Его система счисления».
После нажмите кнопку «ПЕРЕВЕСТИ» и результат появится в соответствующем поле. Если Вы хотите получить подробный ход решения, то нажмите на соответствующую ссылку.
Научиться переводить число из одной системы счисления в другую очень просто.
Любое число может быть легко переведено в десятичную систему по следующему алгоритму:
Каждая цифра числа должна быть умножена на основание системы счисления этого числа возведенное в степень равное позиции текущей цифры в числе справа налево, причём счёт начинается с 0.
Перевод чисел в различные системы счисления с решением
Исходное число записано в -ой системе счисления.
Хочу получить запись числа в -ой системе счисления.
Системы счисления
Системы счисления делятся на два типа: позиционные и не позиционные. Мы пользуемся арабской системой, она является позиционной, а есть ещё римская − она как раз не позиционная. В позиционных системах положение цифры в числе однозначно определяет значение этого числа. Это легко понять, рассмотрев на примере какого-нибудь числа.
Пример 1. Возьмём число 5921 в десятичной системе счисления. Пронумеруем число справа налево начиная с нуля:
Число: | 5 | 9 | 2 | 1 |
Позиция: | 3 | 2 | 1 | 0 |
Пример 2. Рассмотрим вещественное десятичное число 1234.567. Пронумеруем его начиная с нулевой позиции числа от десятичной точки влево и вправо:
Число: | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
Позиция: | 3 | 2 | 1 | 0 | -1 | -2 | -3 |
Перевод чисел из одной системы счисления в другую
Наиболее простым способом перевода числа с одной системы счисления в другую, является перевод числа сначала в десятичную систему счисления, а затем, полученного результата в требуемую систему счисления.
Перевод чисел из любой системы счисления в десятичную систему счисления
Для перевода числа из любой системы счисления в десятичную достаточно пронумеровать его разряды, начиная с нулевого (разряд слева от десятичной точки) аналогично примерам 1 или 2. Найдём сумму произведений цифр числа на основание системы счисления в степени позиции этой цифры:
Перевод чисел из десятичной системы счисления в другую систему счисления
Для перевода чисел из десятичной системы счисления в другую систему счисления целую и дробную части числа нужно переводить отдельно.
Перевод целой части числа из десятичной системы счисления в другую систему счисления
Целая часть переводится из десятичной системы счисления в другую систему счисления с помощью последовательного деления целой части числа на основание системы счисления до получения целого остатка, меньшего основания системы счисления. Результатом перевода будет являться запись из остатков, начиная с последнего.
Рассмотрим перевод правильных десятичных дробей в различные системы счисления.
Перевод дробной части числа из десятичной системы счисления в другую систему счисления
Напомним, правильной десятичной дробью называется вещественное число с нулевой целой частью. Чтобы перевести такое число в систему счисления с основанием N нужно последовательно умножать число на N до тех пор, пока дробная часть не обнулится или же не будет получено требуемое количество разрядов. Если при умножении получается число с целой частью, отличное от нуля, то целая часть дальше не учитывается, так как последовательно заносится в результат.
Programforyou — это сообщество, в котором Вы можете подтянуть свои знания по программированию, узнать, как эффективно решать те или иные задачи, а также воспользоваться нашими онлайн сервисами.