2021 в двоичном коде

Перевести число 2021 из десятичной системы в двоичную

Задача: перевести число 2021 из десятичной системы счисления в двоичную

Для того, чтобы перевести число 2021 из десятичной системы счисления в двоичную, необходимо осуществить последовательное деление на 2, то тех пор пока остаток не будет меньше чем 2.

20212
202010102
110105052
05042522
12521262
0126632
062312
130152
11472
1632
121
1

Полученные остатки записываем в обратном порядке, таким образом:

Подробнее о том, как переводить числа из десятичной системы в двоичную, смотрите здесь.

Источник

Перевести число 2021 из 2021-ой системы в двоичную

Задача: перевести число 2021 из 2021-ой в двоичную систему счисления.

Для перевода 2021 из 2021-ой в двоичную систему счисления, воспользуемся следующим алгоритмом:

1. Для перевода числа 2021 в десятичную систему воспользуемся формулой:

20212021=2 ∙ 2021 3 + 0 ∙ 2021 2 + 2 ∙ 2021 1 + 1 ∙ 2021 0 = 2 ∙ 8254655261 + 0 ∙ 4084441 + 2 ∙ 2021 + 1 ∙ 1 = 16509310522 + 0 + 4042 + 1 = 1650931456510

2. Полученное число 16509314565 переведем из десятичной системы счисления в двоичную. Для этого, осуществим последовательное деление на 2, до тех пор пока остаток не будет меньше чем 2.

165093145652
1650931456482546572822
1825465728241273286412
0412732864020636643202
1206366432010318321602
010318321605159160802
05159160802579580402
02579580401289790202
0128979020644895102
064489510322447552
032244754161223772
11612237680611882
1806118840305942
0403059420152972
0201529610076482
110076485038242
05038242519122
02519121259562
0125956629782
062978314892
031488157442
11574478722
0787239362
0393619682
019689842
09844922
04922462
02461232
0122612
160302
130152
01472
1632
121
1

Полученные остатки записываем в обратном порядке, таким образом:

Ответ: 20212021 = 11110110000000100000100110000001012.

Источник

Перевод чисел из одной системы счисления в другую

Данный конвертер переводит числа между наиболее популярными системами счисления: десятичной, двоичной, восьмеричной, шестнадцатеричной.

Существуют и другие системы счисления, но мы не стали включать их в конвертер из-за низкой популярности.

Для указания системы счисления при записи числа используется нижний индекс, который ставится после числа:
20010 = 110010002 = 3108 = C816

Кратко об основных системах счисления

Десятичная система счисления. Используется в повседневной жизни и является самой распространенной. Все числа, которые нас окружают представлены в этой системе. В каждом разряде такого числа может использоваться только одна цифра от 0 до 9.

Двоичная система счисления. Используется в вычислительной технике. Для записи числа используются цифры 0 и 1.

Восьмеричная система счисления. Также иногда применяется в цифровой технике. Для записи числа используются цифры от 0 до 7.

Перевод в десятичную систему счисления

Перевод из десятичной системы счисления в другие

Делим десятичное число на основание системы, в которую хотим перевести и записываем остатки от деления. Запишем полученные остатки в обратном порядке и получим искомое число.

Переведем число 37510 в восьмеричную систему:

Перевод из двоичной системы в восьмеричную

Так же как и в первом способе разбиваем число на группы. Но вместо преобразований в скобках просто заменим полученные группы (триады) на соответствующие цифры восьмеричной системы, используя таблицу триад:

Перевод из двоичной системы в шестнадцатеричную

Также как и в первом способе разбиваем число на группы по 4 цифры. Заменим полученные группы (тетрады) на соответствующие цифры шестнадцатеричной системы, используя таблицу тетрад:

Тетрада0000000100100011010001010110011110001001101010111100110111101111
Цифра0123456789ABCDEF

Перевод из восьмеричной системы в двоичную

Каждый разряд восьмеричного числа будем делить на 2 и записывать остатки в обратном порядке, формируя группы по 3 разряда двоичного числа. Если в группе получилось меньше 3 разрядов, тогда дополняем нулями. Записываем все группы по порядку, отбрасываем ведущие нули, если имеются, и получаем двоичное число.

Используем таблицу триад:

Каждую цифру исходного восьмеричного числа заменяется на соответствующие триады. Ведущие нули самой первой триады отбрасываются.

Перевод из шестнадцатеричной системы в двоичную

Аналогично переводу из восьмеричной в двоичную, только группы по 4 разряда.

Используем таблицу тетрад:

Цифра0123456789ABCDEF
Тетрада0000000100100011010001010110011110001001101010111100110111101111

Каждую цифру исходного числа заменяется на соответствующие тетрады. Ведущие нули самой первой тетрады отбрасываются.

Перевод из восьмеричной системы в шестнадцатеричную и наоборот

Такую конвертацию можно осуществить через промежуточное десятичное или двоичное число. То есть исходное число сначала перевести в десятичное (или двоичное), и затем полученный результат перевести в конечную систему счисления.

Источник

Двоичное кодирование.

в Компьютеры 23.03.2020 0 184 Просмотров

Двоичное кодирование – это тип кода, используемый в основном для программирования компьютеров на самом базовом уровне. Он состоит из системы единиц и нулей, предназначенной для представления «истинного» или «ложного» значения в логических операциях. Двоичное кодирование было разработано Клодом Шеннаном в 1930-х годах с использованием переключателей.
Двоичные данные – это необработанные данные, которые используются почти на всех компьютерах, но большинство пользователей компьютеров не взаимодействуют с ними напрямую. Компьютер читает двоичный код и переводит его в данные, полезные для пользователя. Коды хранятся по-разному в зависимости от типа объекта. Например, коды могут храниться по напряжению, просто обозначая, включен ли объект, имеет ли он напряжение или выключен. CD-ROM используют темные пятна на блестящей поверхности для обозначения «истинных» или «ложных» значений, жёсткие диски используют магнетизм, а память использует электрический заряд.

2021 в двоичном коде. binary encoding. 2021 в двоичном коде фото. 2021 в двоичном коде-binary encoding. картинка 2021 в двоичном коде. картинка binary encoding. Задача: перевести число 2021 из десятичной системы счисления в двоичную

Двоичное кодирование опирается на биты, наименьшую единицу кодирования. Подобно переключателю, который может быть либо выключен, либо включен, бит может иметь значение либо один, либо ноль. Более знакомые единицы обработки получены из бита. Байт составляет восемь битов, килобайт имеет 1000 байтов, а мегабайт имеет 1000 килобайт. Чем больше число битов, тем больше комбинаций может быть в битах, тем больше информации можно сохранить.

Например, два бита имеют четыре состояния. Оба могут быть выключены, оба могут быть включены, или один может быть выключен, и один может быть включен. В двоичном виде эти комбинации записываются как 00, 01, 10, 11. Количество состояний группы битов можно найти по выражению 2n, где n – количество битов.

Поскольку для каждого бита есть только два значения, с ними проще работать, чем с другими процессами компьютерного кодирования. Группы битов используются для представления различной информации. Байт часто представляет буквенный символ. Например, буква «А», записанная в двоичном виде – «01000001».

Хотя чаще всего используется для программирования компьютеров, двоичное кодирование также используется в генетических алгоритмах для определения пересечения наследственности между родителями и потомками. Биты назначаются каждому родителю для представления части их генетического кода. Затем случайные или конкретные биты копируются или инвертируются для получения кода потомства.

Источник

Перевести число 285B.14 из шестнадцатеричной системы в двоичную

Задача: перевести число 285B.14 из шестнадцатеричной в двоичную систему счисления.

Для перевода 285B.14 из шестнадцатеричной в двоичную систему счисления, воспользуемся следующим алгоритмом:

1. Для перевода числа 285B.14 в десятичную систему воспользуемся формулой:

2. Полученное число 10331.078125 переведем из десятичной системы счисления в двоичную. Т.к. полученное число содержит дробную часть, нам потребуется перевести вначале целую часть, а затем дробную. Таким образом необходимо:

2.1 Для того, чтобы перевести число 10331 из десятичной системы счисления в двоичную, необходимо осуществить последовательное деление на 2, до тех пор пока остаток не будет меньше чем 2.

103312
1033051652
1516425822
1258212912
012906452
16443222
13221612
0160802
180402
040202
020102
01052
0422
121
0

Полученные остатки записываем в обратном порядке, таким образом:

2.2 Для перевода десятичной дроби 0.078125 в двоичную систему, необходимо выполнить последовательное умножение дроби на 2, до тех пор, пока дробная часть не станет равной 0 или пока не будет достигнута заданная точность вычисления. Получаем:

0.078125 ∙ 2 = 0.15625 (0)
0.15625 ∙ 2 = 0.3125 (0)
0.3125 ∙ 2 = 0.625 (0)
0.625 ∙ 2 = 1.25 (1)
0.25 ∙ 2 = 0.5 (0)
0.5 ∙ 2 = 1 (1)

Ответом станет прямая последовательность целых частей произведения. Т.е.

2.3. Осталось соединить переведенные части, таким образом:

Ответ: 285B.1416 = 10100001011011.0001012.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *