биосинтез белка правило чаргаффа свойство генетического кода
Что такое биосинтез белка в клетке
В статье мы дадим определение биосинтезу и рассмотрим основные этапы синтеза белков. Разберёмся, чем трансляция отличается от транскрипции.
В клетках непрерывно идут процессы обмена веществ — процессы синтеза и распада веществ. Каждая клетка синтезирует необходимые ей вещества. Этот процесс называется биосинтезом.
Биосинтез — это процесс создания сложных органических веществ в ходе биохимических реакций, протекающих с помощью ферментов. Биосинтез необходим для выживания — без него клетка умрёт.
Одним из важнейших процессов биосинтеза в клетке является процесс биосинтеза белков, который включает в себя особые реакции, встречающиеся только в живой клетке — это реакции матричного синтеза. Матричный синтез — это синтез новых молекул в соответствии с планом, заложенным в других уже существующих молекулах.
Синтез белка в клетке протекает при участии специальных органелл — рибосом. Это немембранные органеллы, состоящие из рРНК и рибосомальных белков.
Последовательность аминокислот в каждом белке определяется последовательностью нуклеотидов в гене — участке ДНК, кодирующем именно этот белок. Соответствие между последовательностью аминокислот в белке и последовательностью нуклеотидов в кодирующих его ДНК и иРНК определяется универсальным правилом — генетическим кодом.
Информация о белке может быть записана в нуклеиновой кислоте только одним способом — в виде последовательности нуклеотидов. ДНК построена из 4 видов нуклеотидов: аденина (А), тимина (Т), гуанина (Г), цитозина (Ц), а белки — из 20 видов аминокислот. Таким образом, возникает проблема перевода четырёхбуквенной записи информации в ДНК в двадцатибуквенную запись белков. Генетический код — соотношения нуклеотидных последовательностей и аминокислот, на основе которых осуществляется такой перевод.
Процесс синтеза белка в клетке можно разделить на два этапа: транскрипция и трансляция.
Транскрипция — первый этап биосинтеза белка
Транскрипция — это процесс синтеза молекулы иРНК на участке молекулы ДНК.
Транскрипция (с лат. transcription — переписывание) происходит в ядре клетки с участием ферментов, основную работу из которых осуществляет транскриптаза. В этом процессе матрицей является молекула ДНК.
Специальный фермент находит ген и раскручивает участок двойной спирали ДНК. Фермент перемещается вдоль цепи ДНК и строит цепь информационной РНК в соответствии с принципом комплементарности. По мере движения фермента растущая цепь РНК матрицы отходит от молекулы, а двойная цепь ДНК восстанавливается. Когда фермент достигает конца копирования участка, то есть доходит до участка, называемого стоп-кодоном, молекула РНК отделяется от матрицы, то есть от молекулы ДНК. Таким образом, транскрипция — это первый этап биосинтеза белка. На этом этапе происходит считывание информации путём синтеза информационной РНК.
Копировать информацию, хотя она уже содержится в молекуле ДНК, необходимо по следующим причинам: синтез белка происходит в цитоплазме, а молекула ДНК слишком большая и не может пройти через ядерные поры в цитоплазму. А маленькая копия её участка — иРНК — может транспортироваться в цитоплазму.
После транскрипции громоздкая молекула ДНК остаётся в ядре, а молекула иРНК подвергается «созреванию» — происходит процессинг иРНК. На её 5’ конец подвешивается КЭП для защиты этого конца иРНК от РНКаз — ферментов, разрушающих молекулы РНК. На 3’ конце достраивается поли(А)-хвост, который также служит для защиты молекулы. После этого проходит сплайсинг — вырезание интронов (некодирующих участков) и сшивание экзонов (информационных участков). После процессинга подготовленная молекула транспортируется из ядра в цитоплазму через ядерные поры.
Транскрипция пошагово:
Проверьте себя: помните ли вы принцип комплементарности? Молекула ДНК состоит из двух спирально закрученных цепей. Цепи в молекуле ДНК противоположно направлены. Остов цепей ДНК образован сахарофосфатными остатками, а азотистые основания одной цепи располагаются в строго определённом порядке напротив азотистых оснований другой — это и есть правило комплементарности.
Трансляция — второй этап биосинтеза белка
Трансляция — это перевод информации с языка нуклеотидов на язык аминокислот.
Что же происходит в клетке? Трансляция представляет собой непосредственно процесс построения белковой молекулы из аминокислот. Трансляция происходит в цитоплазме клетки. В трансляции участвуют рибосомы, ферменты и три вида РНК: иРНК, тРНК и рРНК. Главным поставщиком энергии при трансляции служит молекула АТФ — аденозинтрифосфорная кислота.
Во время трансляции нуклеотидные последовательности информационной РНК переводятся в последовательность аминокислот в молекуле полипептидной цепи. Этот процесс идёт в цитоплазме на рибосомах. Образовавшиеся информационные РНК выходят из ядра через поры и отправляются к рибосомам. Рибосомы — уникальный сборочный аппарат. Рибосома скользит по иРНК и выстраивает из определённых аминокислот длинную полимерную цепь белка. Аминокислоты доставляются к рибосомам с помощью транспортных РНК. Для каждой аминокислоты требуется своя транспортная РНК, которая имеет форму трилистника. У неё есть участок, к которому присоединяется аминокислота и другой триплетный антикодон, который связывается с комплементарным кодоном в молекуле иРНК.
Цепочка информационной РНК обеспечивает определённую последовательность аминокислот в цепочке молекулы белка. Время жизни информационной РНК колеблется от двух минут (как у некоторых бактерий) до нескольких дней (как, например, у высших млекопитающих). Затем информационная РНК разрушается под действием ферментов, а нуклеотиды используются для синтеза новой молекулы информационной РНК. Таким образом, клетка контролирует количество синтезируемых белков и их тип.
Трансляция пошагово:
По промокоду BIO92021 вы получите бесплатный доступ к курсу биологии 9 класса. Выберите нужный раздел и изучайте биологию вместе с домашней онлайн-школой «Фоксфорда»!
Резюме
Теперь вы знаете, что биосинтез необходим для выживания — без него клетка умрёт. Процесс биосинтеза белков включает в себя особые реакции, встречающиеся только в живой клетке, — это реакции матричного синтеза.
Синтез белка состоит из двух этапов: транскрипции (образование информационной РНК по матрице ДНК, протекает в ядре клетки) и трансляции (эта стадия проходит в цитоплазме клетки на рибосомах). Эти этапы сменяют друг друга и состоят из последовательных процессов.
Транскрипция и трансляция
Удвоение ДНК происходит в синтетическом периоде интерфазы. При этом общее число хромосом не меняется, однако каждая из них содержит к началу деления две молекулы ДНК: это необходимо для равномерного распределения генетического материала между дочерними клетками.
Транскрпиция (лат. transcriptio — переписывание)
Образуется несколько начальных кодонов иРНК.
Нити ДНК последовательно расплетаются, освобождая место для передвигающейся РНК-полимеразы. Молекула иРНК быстро растет.
Трансляция (от лат. translatio — перенос, перемещение)
Рибосома делает шаг, и иРНК продвигается на один кодон: такое в фазу элонгации происходит десятки тысяч раз. Молекулы тРНК приносят новые аминокислоты, соответствующие кодонам иРНК. Аминокислоты соединяются друг с другом: между ними образуются пептидные связи, молекула белка растет.
Примеры решения задачи №1
Без практики теория мертва, так что скорее решим задачи! В первых двух задачах будем пользоваться таблицей генетического кода (по иРНК), приведенной вверху.
«Фрагмент цепи ДНК имеет следующую последовательность нуклеотидов: ЦГА-ТГГ-ТЦЦ-ГАЦ. Определите последовательность нуклеотидов во второй цепочке ДНК, последовательность нуклеотидов на иРНК, антикодоны соответствующих тРНК и аминокислотную последовательность соответствующего фрагмента молекулы белка, используя таблицу генетического кода»
По принципу комплементарности мы нашли вторую цепочку ДНК: ГЦТ-АЦЦ-АГГ-ЦТГ. Мы использовали следующие правила при нахождении второй нити ДНК: А-Т, Т-А, Г-Ц, Ц-Г.
Вернемся к первой цепочке, и именно от нее пойдем к иРНК: ГЦУ-АЦЦ-АГГ-ЦУГ. Мы использовали следующие правила при переводе ДНК в иРНК: А-У, Т-А, Г-Ц, Ц-Г.
Зная последовательность нуклеотидов иРНК, легко найдем тРНК: ЦГА, УГГ, УЦЦ, ГАЦ. Мы использовали следующие правила перевода иРНК в тРНК: А-У, У-А, Г-Ц, Ц-Г. Обратите внимание, что антикодоны тРНК мы разделяем запятыми, в отличие кодонов иРНК. Это связано с тем, что тРНК представляют собой отдельные молекулы (в виде клеверного листа), а не линейную структуру (как ДНК, иРНК).
Пример решения задачи №2
«Известно, что все виды РНК синтезируются на ДНК-матрице. Фрагмент цепи ДНК, на которой синтезируется участок центральной петли тРНК, имеет следующую последовательность нуклеотидов: ТАГ-ЦАА-АЦГ-ГЦТ-АЦЦ. Установите нуклеотидную последовательность участка тРНК, который синтезируется на данном фрагменте, и аминокислоту, которую будет переносить эта тРНК в процессе биосинтеза белка, если третий триплет соответствует антикодону тРНК»
Пример решения задачи №3
Длина фрагмента молекулы ДНК составляет 150 нуклеотидов. Найдите число триплетов ДНК, кодонов иРНК, антикодонов тРНК и аминокислот, соответствующих данному фрагменту. Известно, что аденин составляет 20% в данном фрагменте (двухцепочечной молекуле ДНК), найдите содержание в процентах остальных нуклеотидов.
Теперь мы украсили теорию практикой. Что может быть лучше при изучении новой темы? 🙂
© Беллевич Юрий Сергеевич 2018-2021
Данная статья написана Беллевичем Юрием Сергеевичем и является его интеллектуальной собственностью. Копирование, распространение (в том числе путем копирования на другие сайты и ресурсы в Интернете) или любое иное использование информации и объектов без предварительного согласия правообладателя преследуется по закону. Для получения материалов статьи и разрешения их использования, обратитесь, пожалуйста, к Беллевичу Юрию.
Правило Чаргаффа для ДНК И РНК
Типы репликации геномов. Инициация репликации генома
Репликация начинается с того, что в определенной точке происходит разъединение двойной спирали и образование одноцепочечных участков ДНК, которые служат матрицей для синтеза новой цепи.
Участок, в котором в данный момент времени происходит синтез ДНК, называют вилкой репликации. Описано три типа репликации геномов.
1. Репликация бактериальных и вирусных кольцевых геномов начинается с определенной точки и идет в противоположных направлениях, т.е. у бактерий и вирусов существует одна точка начала репликации и две репликационные вилки. Реплицирующаяся хромосома напоминает по структуре греческую букву сигма.
По завершении репликации сигма-типа образуются две кольцевые молекулы.
2. У некоторых вирусов (например, у бактериофага X) и при амплификации ДНК генов рРН К в оогенезе у амфибий в одной цепи их кольцевой хромосомы происходит разрыв фосфодиэфирной связи. Затем к свободному 3′-концу разорванной цепи начинают присоединяться нуклеотиды, эта цепь растет, а кольцевая цепь служит матрицей.
По мере роста разорванной цепи ее 5′-конец постепенно смещается, и начинается построение цепочки, комплементарной этому участку. Образующаяся структура похожа на греческую букву сигма.
Такой тип репликации называют «катящимся кольцом» или типом. Вновь синтезированный «хвост» в определенных точках разрезается, и по завершении оштого цикла репликации образуется одна кольцевая молекула и одна линейная.
Длина образующегося «хвоста» иногда может в несколько раз превышать длину окружности кольцевой молекулы.
3. Линейные хромосомы (у некоторых вирусов и эукариот) начинают реплицироваться в одной или нескольких точках, две вилки репликации движутся в противоположных направлениях. По завершении репликации образуются две линейные молекулы.
Участок генома в пределах которого репликация начинается и заканчивается, называется репликоном. Геномы прокариот удваиваются целиком, водном цикле репликации, следовательно, их геномы представляют собой один репликон. В геномах эукариот точек начала репликации множество (несколько сотен или тысяч). Репликация ДНК начинается одновременно во многих точках, следовательно, геном представлен множеством репликонов.
Правило чаргаффа для ДНК
Как в любом матричном процессе, в репликации можно выделить три этапа: инициацию, элонгацию и терминацию.
Инициация репликации генома
Инициация репликации включает формирование репликационной вилки и синтез РНК-праймера. В этом процессе участвует большое число белков и ферментов. Инициирующие белки должны выполнить, по крайней мере, три основные функции: 1) облегчить раскручивание молекул ДНК и ее локальную денатурацию в области начала репликации; 2) обеспечить связь белков и ферментов, участвующих в репликации, с точками начала репликации; 3) обеспечить координацию клеточного цикла и процессов репликации.
Для инициации репликации у эука-риот, в отличие от прокариот, связывания инициирующих белков с точками начала репликации недостаточно.
Инициация репликации происходит в строго определенных участках. Выделены и определены последовательности нуклеотидов в точках начала репликации у кишечной палочки Е. coii, многих фагов и плазмид, у дрожжей, млекопитающих и некоторых вирусов эукариот.
У Е. coli этот сайт представляет собой участок ДНК размером 245 нуклеотидов, состоящий из серии 9- и 13- нуклеотидных повторов. Область oriC у бактерий очень консервативна, хотя есть виды, у которых она не обнаружена. Процесс инициации начинается с присоединения к хромосоме белка DnaA.
Это приводит к разделению цепей и способствует работе основного расплетающего белка — геликазы (DnaB). В решении топологических проблем, связанных с разделением цепей двойной спирали, участвует и фермент гираза. С образовавшейся одноцепочечной ДНК связываются белки SSB (от англ.
single strand binding), которые стабилизируют вилку репликации. Фермент праймаза синтезирует РНК-праймеры на лидирующей и отстающей цепях,
Размер и структура элементов, обеспечивающих начало репликации у эукариот и прокариот, различны.
Общим для всех сайтов начала репликации является их обогащенность АТ-парами. По-видимому, это необходимо для обеспечения локальной денатурации, поскольку АТ-пары образуют только две водородные связи.
События, происходящие при инициации репликации у эукариот и связи ее с клеточным циклом, лучше всего изучены у дрожжей. Рассмотрим инициацию репликации и клеточный цикл у дрожжей Saccharomyces cerevisiae. На стадии G1, когда активность циклин-зависимой киназы Cdkl низка, формируется пре-репликационный комплекс, в состав которого входят шесть белков комплекса ORC (ORC1-6) и белки Cdc6 и Mem.
Высоко консервативные белки, составляющие комплекс ORC специфически связываются с точками начала репликации и служат основой для присоединения других инициирующих белков Cdc6 и Mem.
При переходе от стадии G1 к стадии S активность Cdkl возрастает и Cdc6p покидает комплекс. На его место «встает» белок Cdc45. В этой перестройке комплекса, необходимой для активации точки начала репликации в течение стадии S, принимает участие белок Cdc7-Dbf4-киназа.
После инициации репликации пререпликационный комплекс превращается в пост-репликационный, он состоит только из белков ORC, связанных с хроматином.
Этот комплекс сохраняется до конца митоза, когда активность Cdk l падает. Образование нового пре-репликационного комплекса становится возможным только в следующей стадии GI. Таким образом, в течение одного клеточного цикла происходит лишь один цикл репликации. Белки ORC остаются связанными с точкой начала репликации, другие компоненты пре-репликационного комплекса или покидают его, или становятся частью вилки репликации.
Например, белки Mcm2p-Mcm7p, по-видимому, функционируют как репликативная геликаза. У всех изученных эука-риот схема событий и белки, участвующие в инициации, сходны. Однако есть и некоторые отличия. Так, у некоторых организмов (другой вид дрожжей, дрозофила, ксенопус)для присоединения Мсm2р-Мсm7р к хроматину необходим дополнительный белок Cdt 1.
У дрожжей белки ORC остаются связанными с хроматином на всех стадиях клеточного цикла, а у позвоночных во время митоза они отделяются от хроматина и вновь соединяются с ним только в стадии G1.
До сих пор не ясно, как репликационная машина (ДНК-полимераза-праймаза и репликационный белок А) связывается с точкой начала репликации, как части инициирующего комплекса (Mcm2p-Mcm7p и Cdc45p) преобразуются в компоненты вилки репликации. Гены, кодирующие основные белки, участвующие в инициации репликации ДНК у человека, приведены в таблице.
Разделение двойной спирали происходите помощью ДНК-геликазы и реплика-ционного белка RPA (от англ. — replication protein А). Репликационный белок А, состоящий из трех полипептидов, связывается с одноцепочечный ДНК, таким образом он выполняет ту же функцию, что и SSB-белки у кишечной палочки. Затем а-ДНК-полимераза-праймаза синтезирует короткие (длиной примерно 30 п.н.) РНК-праймеры на лидирующей и отстающей цепях.
После этого происходит замена альфа-полимеразного комплекса на комплекс 5-ДНК- полимеразы — основного фермента репликации ДНК у эукариот.
«Принцип комплементарности, правило Чаргаффа»
Правила решения и критерии оценивания задач по молекулярной биологии
Для решения задач данного типа необходимы знания о строении и свойствах ДНК и РНК, принципе комплементарности, коде ДНК и его свойствах, механизме биосинтеза белка, этапах диссимиляции глюкозы, роли АТФ в клеточном метаболизме.
Основные биологические понятия:
ген – участок ДНК, в матричной цепи которого зашифрована информация о первичной структуре одной полипептидной цепи; матрица для синтеза всех видов РНК;
генетический код – система записи информации о порядке аминокислот в белковой молекуле в виде последовательности нуклеотидов ДНК или РНК;
триплет (кодон) – три последовательно соединенных нуклеотида ДНК или РНК, несущих информацию об определенной аминокислоте;
антикодон – кодовый триплет т-РНК, комплементарный кодону и-РНК и определяющий аминокислоту, которую переносит данная т-РНК;
комплементарность – свойство азотистых оснований избирательно соединяться друг с другом (А-Т (У), Ц-Г);
репликация – процесс удвоения ДНК в соответствии с принципом комплементарности;
транскрипция («переписывание») – процесс синтеза и-РНК на кодирующей цепи гена в соответствии с принципом комплементарности;
трансляция – процесс синтеза белковой молекулы на рибосоме в соответствии с последовательностью кодонов и-РНК;
правило Чаргаффа – правило соответствия количества пуриновых (А+Г) нуклеотидов в молекуле ДНК количеству пиримидиновых (Т+Ц) нуклеотидов.
Следствие: в любой двуцепочной структуре нуклеиновых кислот количество адениловых нуклеотидов равно количеству тимидиловых (уридиловых), а количество гуаниловых нуклеотидов равно количеству цитидиловых, т. е. А = Т(У); Г = Ц;
экзон – фрагмент гена эукариот, несущий информацию о структуре белковой молекулы;
интрон – фрагмент гена эукариот, не несущий информации о структуре белковой молекулы;
зрелая и-РНК (матричная) – и-РНК эукариот, образовавшаяся в результате рестрикции и сплайсинга и состоящая только из экзонов;
диссимиляция глюкозы – процесс ферментативного расщепления и окисления глюкозы;
фосфорилирование – процесс образования АТФ из АДФ и остатка фосфорной кислоты;
гликолиз – процесс ферментативного расщепления глюкозы без участия кислорода до c образованием 2 молекул АТФ;
аэробный гликолиз – процесс ферментативного расщепления и окисления органических веществ (в том числе, глюкозы) до конечных продуктов с участием кислорода как акцептора электронов в ходе окислительного фосфорилирования;
дыхание – процесс окисления сложных органических веществ до более простых с целью аккумуляции энергии в АТФ.
Задачи по теме «Принцип комплементарности, правило Чаргаффа»
Для решения задач этого типа необходимо знание принципа комплементарности, строения и свойств ДНК и РНК, правило Чаргаффа.
Задача 1.
Достроить вторую цепочку молекулы ДНК, имеющую следующую последовательность нуклеотидов в одной цепи: АТТЦГАЦГГЦТАТАГ. Определить ее длину, если один нуклеотид имеет длину 0,34 нм по длине цепи ДНК.
Вторая цепочка ДНК строится по принципу комплементарности (А-Т, Г-Ц):
1-ая цепь ДНК – А Т Т Ц Г А Ц Г Г Ц Т А Т А Г
2-ая цепь ДНК – Т А А Г Ц Т Г Ц Ц Г А Т А Т Ц
в одной цепи ДНК = 0,34нм × 15 = 5,1 нм
Ответ: вторая цепь ДНК имеет состав нуклеотидов
ТААГЦТГЦЦГАТАТЦ, длина ДНК составляет 5,1 нм.
При оформлении задач такого типа краткую запись того, что в задаче дано можно не записывать. При написании нуклеотидов в комплементарных цепях следует аккуратно комплементарные нуклеотиды размещать друг напротив друга.
Задача 2. В молекуле ДНК тимидиловых нуклеотидов 30, что составляет 15% от общего количества нуклеотидов.
Определите количество других видов нуклеотидов в данной молекуле ДНК.
1. По правилу Чаргаффа количество Т в ДНК = А; следовательно А будет 15%.
2. В сумме А+Т = 30%, что составляет 60 нуклеотидов.
3.Находим общее количество нуклеотидов в молекуле ДНК: х=3000/20=150
4. Г + Ц = 100%-30%=70%, значит Г=35%,Ц=35%
Г+Ц=90, значит Г=45, Ц=45.
При решении задач такого типа строгих регламентирующих правил оформления нет.
Однако учитывайте, что в записи решения задачи по молекулярной биологии должен прослеживаться ход рассуждений и должна быть записана четкая последовательность действий.
Задача 3. Химический анализ показал, что 28% от общего числа нуклеотидов данной и-РНК приходится на адениловые, 6% — на гуаниловые, 40% — на урациловые нуклеотиды.
Каков должен быть нуклеотидный состав соответствующего участка одной цепи гена, информация с которого «переписана» на данную и-РНК?
Решение задач по правилу Чаргаффа
Зная, что и-РНК синтезируется с кодирующей цепи гена по принципу комплементарности (причем Т заменяется на У), подсчитываем процентный состав
нуклеотидов в одной цепочке гена:
Ц и-РНК = Г гена = 26%,
А и-РНК = Т гена = 28%,
У и-РНК = А гена = 40%.
Ответ: нуклеотидный состав одной из цепей гена следующий: гуаниловых нуклеотидов – 26%, цитидиловых- 6%, тимидиловых — 28%, адениловых — 40%.
Задача 4. Химический анализ показал, что в составе и-РНК 20% адениловых нуклеотидов, 16% урациловых, 30% цитидиловых.
Определите качественный состав нуклеотидов в ДНК, с которой была считана информация на и-РНК.
1.Определяем в процентах содержание гуаниловых нуклеотидов в и-РНК:
Г (и-РНК)= 100%-(А+У+Ц)= 100%-(20%+16%+30%)= 34%
2.Определяем качественный состав цепи РНК и ДНК, с которой проходила транскрипция:
и-РНК | А(20%) | У(16%) | Ц(30%) | Г(34%) |
ДНК(1 цепь) | Т(20%) | А(16%) | Г(30%) | Ц(34%) |
ДНК(2 цепь) | А(20%) | Т(16%) | Ц(30%) | Г(34%) |
Раздел 2.
Задачи по теме «Свойства генетического кода»
Для решения этих задач необходимо знание свойств кода ДНК, умение пользоваться таблицей генетического кода.
Задача 5. В белке содержится 51 аминокислота.
Сколько нуклеотидов будет в цепи гена, кодирующей этот белок, и сколько — в соответствующем фрагменте молекулы ДНК?
1)Поскольку генетический код триплетен, т. е. одна аминокислота кодируется тремя нуклеотидами, то количество нуклеотидов в кодирующей цепи гена будет 51
2) а в двухцепочечной ДНК количество нуклеотидов будет вдвое больше, т.
Ответ: в кодирующей цепи гена будет содержаться 153 нуклеотида, во фрагменте ДНК-306.
Обратите внимание, что транскрипция проходит только на одной цепи ДНК!
Задача 6. В кодирующей цепи гена содержится 600 нуклеотидов.
Сколько аминокислот содержится в молекуле белка, информация о которой закодирована в этом гене,
если в конце гена имеются два стоп — кодона?
Значит, информация о данном белке закодирована в цепочке из 594 (600 – 6) нуклеотидов.
2. Основываясь на триплетности кода, подсчитаем количество аминокислот: 594 : 3 = 198.
Ответ: в молекуле белка содержится 198 аминокислот.
Молекулы нуклеиновых кислот всех типов живых организмов — это длинные неразветвленные полимеры мононуклеотидов.
Роль мостика между нуклеотидами выполняет 3′,5′-фосфодиэфирная связь, соединяющая 5′-фосфат одного нуклеотида и 3′-гидроксильный остаток рибозы (или дезоксирибозы) следующего.
В связи с этим полинуклеотидная цепь оказывается полярной. На одном ее конце остается свободной 5′-фосфатная группа, на другом 3′-ОН-группа.
ДНК, подобно белкам, имеет первичную, вторичную и третичную структуры.
Первичная структура ДНК
Данная структура определяет закодированную в ней информацию, представляя собой последовательность чередования дезоксирибонуклеотидов в полинуклеотидной цепи.
Молекула ДНК состоит из двух спиралей, имеющих одну и ту же ось, и противоположные направления. Сахарофосфатный остов располагается по периферии двойной спирали, а азотистые основания находятся внутри. Остов содержит ковалентные фосфодиэфирные связи, а обе спирали между основаниями соединены водородными связями и гидрофобными взаимодействиями.
Эти связи впервые были открыты и изучены Э.Чаргаффом в 1945 г. и получили название принципа комплементарности, а особенности образования водородных свзей между основаниями называются правилами Чаргаффа:
Правила Чаргаффа основаны на том, что аденин образует две связи с тимином, а гуанин образует три связи с цитозином:
На основании правил Чаргаффа можно представить двуспиральную структуру ДНК, которая приведена на рисунке.
А-форма В-форма
A-аденин, G-гуанин, C-цитозин, T-тимин
Схематическое изображение двуспиральной молекулы ДНК
Вторичная структура ДНК
В соответствии с моделью, предложенной в 1953 г. Дж. Уотсоном и Ф. Криком, вторичная структура ДНК представляет собой двухцепочечную правозакрученную спираль из комплементарных друг другу антипараллельных полинуклеотидных цепей.
Для вторичной структуры ДНК решающим являются две особенности строения азотистых оснований нуклеотидов.
Первая заключается в наличии групп, способных образовывать водородные связи. Вторая особенность заключается в том, что пары комплементарных оснований А—Т и Г—Ц оказываются одинаковыми не только по размеру, но и по форме.
Благодаря способности нуклеотидов к спариванию, образуется жесткая, хорошо стабилизированная двухцепочечная структура. Основные элементы и параметрические характеристики такой структуры наглядно изображены на рисунке.
На основе тщательного анализа рентгенограмм выделенных ДНК установлено, что двойная спираль ДНК может существовать в виде нескольких форм (А, В, С, Z и др.).
Указанные формы ДНК различаются диаметром и шагом спирали, числом пар оснований в витке, углом наклона плоскости оснований по отношению к оси молекулы.
Третичная структура ДНК. У всех живых организмов двухспиральные молекулы ДНК плотно упакованы с образованием сложных трехмерных структур.
Двухцепочечные ДНК прокариот, имеющие кольцевую ковалентно-замкнутую форму, образуют левые (—) суперспирали.
Третичная структура ДНК
Третичная структура ДНК эукариотических клеток также образуется путем суперспирализации, но не свободной ДНК, а ее комплексов с белками хромосом (белки-гистоны классов Н1, Н2, Н3, Н4 и Н5).
В пространственной организации хромосом можно выделить несколько уровней.
Первый уровень – нуклеосомный. В результате нуклеосомной организации хроматина двойная спираль ДНК диаметром 2 нм приобретает диаметр 10—11 нм и укорачивается примерно в 7 раз.
Вторым уровнем пространственной организации хромосом является образование из нуклеосомной нити хроматиновой фибриллы диаметром 20— 30 нм (уменьшение линейных размеров ДНК еще в 6—7 раз).
Третичный уровень организации хромосом обусловлен укладкой хроматиновой фибриллы в петли.
В образовании петель принимают участие негистоновые белки. Участок ДНК, соответствующий одной петле, содержит от 20 000 до 80 000 пар нуклеотидов. В результате такой упаковки линейные размеры ДНК уменьшаются примерно в 200 раз. Петлеобразная доменная организация ДНК, называемая интерфазной хромонемой, может подвергаться дальнейшей компактизации, степень которой меняется в зависимости от фазы клеточного цикла.