что такое код символа в информатике
Кодирование символов
Кодировка символов (часто называемая также кодовой страницей ) – это набор числовых значений, которые ставятся в соответствие группе алфавитно-цифровых символов, знаков пунктуации и специальных символов.
Для кодировки символов в Windows используется таблица ASCII (American Standard Code for Interchange of Information).
В ASCII первые 128 символов всех кодовых страниц состоят из базовой таблицы символов. Первые 32 кода базовой таблицы, начиная с нулевого, размещают управляющие коды.
Символ | Код | Клавиши | Значение |
nul | 0 | Ctrl + @ | Нуль |
soh | 1 | Ctrl + A | Начало заголовка |
stx | 2 | Ctrl + B | Начало текста |
etx | 3 | Ctrl + C | Конец текста |
eot | 4 | Ctrl + D | Конец передачи |
enq | 5 | Ctrl + E | Запрос |
ack | 6 | Ctrl + F | Подтверждение |
bel | 7 | Ctrl + G | Сигнал (звонок) |
bs | 8 | Ctrl + H | Забой (шаг назад) |
ht | 9 | Ctrl + I | Горизонтальная табуляция |
lf | 10 | Ctrl + J | Перевод строки |
vt | 11 | Ctrl + K | Вертикальная табуляция |
ff | 12 | Ctrl + L | Новая страница |
cr | 13 | Ctrl + M | Возврат каретки |
so | 14 | Ctrl + N | Выключить сдвиг |
si | 15 | Ctrl + O | Включить сдвиг |
dle | 16 | Ctrl + P | Ключ связи данных |
dc1 | 17 | Ctrl + Q | Управление устройством 1 |
dc2 | 18 | Ctrl + R | Управление устройством 2 |
dc3 | 19 | Ctrl + S | Управление устройством 3 |
dc4 | 20 | Ctrl + T | Управление устройством 4 |
nak | 21 | Ctrl + U | Отрицательное подтверждение |
syn | 22 | Ctrl + V | Синхронизация |
etb | 23 | Ctrl + W | Конец передаваемого блока |
can | 24 | Ctrl + X | Отказ |
em | 25 | Ctrl + Y | Конец среды |
sub | 26 | Ctrl + Z | Замена |
esc | 27 | Ctrl + [ | Ключ |
fs | 28 | Ctrl + \ | Разделитель файлов |
gs | 29 | Ctrl + ] | Разделитель группы |
rs | 30 | Ctrl + ^ | Разделитель записей |
us | 31 | Ctrl + _ | Разделитель модулей |
Базовая таблица кодировки ASCII
Символы с номерами от 128 до 255 представляют собой таблицу расширения и варьируются в зависимости от набора скриптов, представленных кодировкой символов. Набор символов таблицы расширения различается в зависимости от выбранной кодовой страницы:
1251 – кодовая страница Windows
128 Ђ | 144 Ђ | 160 | 176 ° | 192 А | 208 Р | 224 а | 240 р |
129 Ѓ | 145 ‘ | 161 Ў | 177 ± | 193 Б | 209 С | 225 б | 241 с |
130 ‚ | 146 ’ | 162 ў | 178 I | 194 В | 210 Т | 226 в | 242 т |
131 ѓ | 147 “ | 163 J | 179 i | 195 Г | 211 У | 227 г | 243 у |
132 „ | 148 ” | 164 ¤ | 180 ґ | 196 Д | 212 Ф | 228 д | 244 ф |
133 … | 149 • | 165 Ґ | 181 μ | 197 Е | 213 Х | 229 е | 245 х |
134 † | 150 – | 166 ¦ | 182 ¶ | 198 Ж | 214 Ц | 230 ж | 246 ц |
135 ‡ | 151 — | 167 § | 183 · | 199 З | 215 Ч | 231 з | 247 ч |
136 € | 152 □ | 168 Ё | 184 ё | 200 И | 216 Ш | 232 и | 248 ш |
137 ‰ | 153 ™ | 169 © | 185 № | 201 Й | 217 Щ | 233 й | 249 щ |
138 Љ | 154 љ | 170 Є | 186 є | 202 К | 218 Ъ | 234 к | 250 ъ |
139 | 171 « | 187 » | 203 Л | 219 Ы | 235 л | 251 ы | |
140 Њ | 156 њ | 172 ¬ | 188 j | 204 М | 220 Ь | 236 м | 252 ь |
141 Ќ | 157 ќ | 173 | 189 S | 205 Н | 221 Э | 237 н | 253 э |
142 Ћ | 158 ћ | 174 ® | 190 s | 206 О | 222 Ю | 238 о | 254 ю |
143 Џ | 159 џ | 175 Ï | 191 ї | 207 П | 223 Я | 239 п | 255 я |
866 – кодовая страница DOS
128 А | 144 Р | 160 а | 176 ░ | 192 └ | 208 ╨ | 224 р | 240 ≡Ё |
129 Б | 145 С | 161 б | 177 ▒ | 193 ┴ | 209 ╤ | 225 с | 241 ±ё |
130 В | 146 Т | 162 в | 178 ▓ | 194 ┬ | 210 ╥ | 226 т | 242 ≥ |
131 Г | 147 У | 163 г | 179 │ | 195 ├ | 211 ╙ | 227 у | 243 ≤ |
132 Д | 148 Ф | 164 д | 180 ┤ | 196 ─ | 212 ╘ | 228 ф | 244 ⌠ |
133 Е | 149 Х | 165 е | 181 ╡ | 197 ┼ | 213 ╒ | 229 х | 245 ⌡ |
134 Ж | 150 Ц | 166 ж | 182 ╢ | 198 ╞ | 214 ╓ | 230 ц | 246 ¸ |
135 З | 151 Ч | 167 з | 183 ╖ | 199 ╟ | 215 ╫ | 231 ч | 247 » |
136 И | 152 Ш | 168 и | 184 ╕ | 200 ╚ | 216 ╪ | 232 ш | 248 ° |
137 Й | 153 Щ | 169 й | 185 ╣ | 201 ╔ | 217 ┘ | 233 щ | 249 · |
138 К | 154 Ъ | 170 к | 186 ║ | 202 ╩ | 218 ┌ | 234 ъ | 250 ∙ |
139 Л | 155 Ы | 171 л | 187 ╗ | 203 ╦ | 219 █ | 235 ы | 251 √ |
140 М | 156 Ь | 172 м | 188 ╝ | 204 ╠ | 220 ▄ | 236 ь | 252 ⁿ |
141 Н | 157 Э | 173 н | 189 ╜ | 205 ═ | 221 ▌ | 237 э | 253 ² |
142 О | 158 Ю | 174 о | 190 ╛ | 206 ╬ | 222 ▐ | 238 ю | 254 ■ |
143 П | 159 Я | 175 п | 191 ┐ | 207 ╧ | 223 ▀ | 239 я | 255 |
Русские названия основных спецсимволов:
Символ | Название |
` | гравис, кавычка, обратный машинописный апостроф |
` | гравис, кавычка, обратный машинописный апостроф |
тильда | |
! | восклицательный знак |
@ | эт, коммерческое эт, «собака» |
# | октоторп, решетка, диез |
$ | знак доллара |
% | процент |
^ | циркумфлекс, знак вставки |
& | амперсанд |
* | астериск, звездочка, знак умножения |
( | левая открывающая круглая скобка |
) | правая закрывающая круглая скобка |
— | минус, дефис |
_ | знак подчеркивания |
= | знак равенства |
+ | плюс |
[ | левая открывающая квадратная скобка |
] | правая закрывающая квадратная скобка |
< | левая открывающая фигурная скобка |
> | правая закрывающая фигурная скобка |
; | точка с запятой |
: | двоеточие |
‘ | машинописный апостроф, одинарная кавычка |
« | двойная кавычка |
, | запятая |
. | точка |
/ | слэш, косая черта, знак дроби |
правая закрытая угловая скобка, знак больше | |
\ | обратный слэш, обратная косая черта |
| | вертикальная черта |
Кодировка UNICODE
Юникод (Unicode) — стандарт кодирования символов, позволяющий представить знаки практически всех письменных языков. Стандарт предложен в 1991 году некоммерческой организацией «Консорциум Юникода».
В Unicode используются 16-битовые (2-байтовые) коды, что позволяет представить 65536 символов.
Применение стандарта Unicode позволяет закодировать очень большое число символов из разных письменностей: в документах Unicode могут соседствовать китайские иероглифы, математические символы, буквы греческого алфавита, латиницы и кириллицы, при этом становится ненужным переключение кодовых страниц.
Тип кодировки задается в свойствах проекта Microsoft Visual Studio:
Многобайтовая кодировка предполагает использование кодировки ASCII.
При этом при построении проекта используется директива условной компиляции, переопределяющая тип TCHAR :
Для перекодирования строки в формат Unicode без изменения кодировки файла используется макроопределение
_T(«строка»)
Кодирование информации
Информация бывает разного вида, например:
В разных отраслях науки, культуры и техники разработаны специальные формы для записи информации.
Код — это группа обозначений, которую можно использовать для отображения информации.
Примеры кодирования информации:
— для отображения звуков русского алфавита используют буквы (АБВГДЕЁЖ…ЭЮЯ);
— для отображения чисел используют цифры (0123456789);
— звуки записывают нотами и другими символами;
— слепые используют азбуку Брайля, где буква состоит из шести элементов: дырочек и бугорков.
Надо учитывать, что не зная принципы кодирования информации, один и тот же код, можно понять по-разному, например, число 300522005 можно посчитать за число, номер телефона или за количество населения.
0 — сигнала нет (нету напряжения или не течёт ток);
1 — сигнал есть (есть напряжение или течёт ток).
Создание кода.
Одним битов можно кодировать два состояния: 0 и 1 (да и нет, чёрный и белый). При увеличении количества битов на один получится в два раза больше кодов.
Пример:
Два бита создают 4 разных кода: 00, 01, 10 и 11;
три бита создают 8 разных кодов: 000, 001, 010, 011, 100, 101, 110, и 111.
Кодирование различных видов информации
Кодирование текстов
При кодировании текста каждому символу присваивается какое-то значение, например, порядковый номер.
Первый популярный компьютерный стандарт кодирования текста имеет название ASCII (American Standart Code for Information Interchange), в котором для кодирования каждого символа используются 7 бит.
7-ю битами можно закодировать 128 символов: большие и маленькие латинские буквы, цифры, знаки препинания, а так же специальные символы, например, «§».
Стандарту создавали разные варианты, дополняя код до 8 бит (256 символов), чтобы можно было кодировать национальные символы, например, латышскую букву ā.
Но 256 символов не хватило, чтобы кодировать все символы разных алфавитов, поэтому создали новые стандарты. Один из самых популярных в наше время, это UNICODE. В котором каждый символ кодируют 2-мя байтами, получается в итоге 62536 разных кодов.
Кодирования графических данных
Почти все созданные и обработанные изображения, хранящиеся в компьютере, можно поделить на две группы:
Для кодирования не цветных изображений обычно используют 256 оттенков серого, начиная от белого, заканчивая чёрным. Для кодирования всех цветов надо 8 битов (1 байт).
Для кодирования цветных изображений обычно используют три цвета: красный, зелёный и синий. Цветной тон получается при смешивании этих трёх цветов.
Размер изображения можно посчитать, умножив его ширину на длину в пикселях. Например, изображение размером 200⋅100 пикселей, занимает 60000 байт.
Кодирование звуков
Звуки появляются из-за колебаний воздуха. У звука есть две величины:
— амплитуда колебания, которая указывает на громкость звука;
— частота колебания, которая указывает на тональность звука.
Звук можно переделать в электрический сигнал, например, микрофоном.
Звук кодируют, после точного интервала времени измеряя размер сигнала и присваивая ему бинарную величину. Чем чаще проводятся эти измерения, тем лучше качество звука.
Пример:
На одном компакт диске, с объемом 700 Мб, может вместиться 80 минут звука CD качества.
Кодирование видео
Фильм состоит из кадров, которые быстро меняются. Кодированный фильм содержит информацию о размере кадра, используемых цветах, и количество кадров в секунду (обычно 30), как и способ записи звука — каждому кадру отдельно или всему фильму сразу.
Кодирование для чайников, ч.1
Не являясь специалистом в обозначенной области я, тем не менее, прочитал много специализированной литературы для знакомства с предметом и прорываясь через тернии к звёздам набил, на начальных этапах, немало шишек. При всём изобилии информации мне не удалось найти простые статьи о кодировании как таковом, вне рамок специальной литературы (так сказать без формул и с картинками).
Статья, в первой части, является ликбезом по кодированию как таковому с примерами манипуляций с битовыми кодами, а во второй я бы хотел затронуть простейшие способы кодирования изображений.
0. Начало
Давайте рассмотрим некоторые более подробно.
1.1 Речь, мимика, жесты
1.2 Чередующиеся сигналы
В примитивном виде кодирование чередующимися сигналами используется человечеством очень давно. В предыдущем разделе мы сказали про дым и огонь. Если между наблюдателем и источником огня ставить и убирать препятствие, то наблюдателю будет казаться, что он видит чередующиеся сигналы «включено/выключено». Меняя частоту таких включений мы можем выработать последовательность кодов, которая будет однозначно трактоваться принимающей стороной.
1.3 Контекст
2. Кодирование текста
Текст в компьютере является частью 256 символов, для каждого отводится один байт и в качестве кода могут быть использованы значения от 0 до 255. Так как данные в ПК представлены в двоичной системе счисления, то один байт (в значении ноль) равен записи 00000000, а 255 как 11111111. Чтение такого представления числа происходит справа налево, то есть один будет записано как 00000001.
Итак, символов английского алфавита 26 для верхнего и 26 для нижнего регистра, 10 цифр. Так же есть знаки препинания и другие символы, но для экспериментов мы будем использовать только прописные буквы (верхний регистр) и пробел.
Тестовая фраза «ЕХАЛ ГРЕКА ЧЕРЕЗ РЕКУ ВИДИТ ГРЕКА В РЕЧКЕ РАК СУНУЛ ГРЕКА РУКУ В РЕКУ РАК ЗА РУКУ ГРЕКУ ЦАП».
2.1 Блочное кодирование
Информация в ПК уже представлена в виде блоков по 8 бит, но мы, зная контекст, попробуем представить её в виде блоков меньшего размера. Для этого нам нужно собрать информацию о представленных символах и, на будущее, сразу подсчитаем частоту использования каждого символа:
Представление символов, таблицы кодировок
Содержание
Представление символов в вычислительных машинах [ править ]
В вычислительных машинах символы не могут храниться иначе, как в виде последовательностей бит (как и числа). Для передачи символа и его корректного отображения ему должна соответствовать уникальная последовательность нулей и единиц. Для этого были разработаны таблицы кодировок.
Таблицы кодировок [ править ]
На заре компьютерной эры на каждый символ было отведено по пять бит. Это было связано с малым количеством оперативной памяти на компьютерах тех лет. В эти [math]32[/math] символа входили только управляющие символы и строчные буквы английского алфавита.
С ростом производительности компьютеров стали появляться таблицы кодировок с большим количеством символов. Первой семибитной кодировкой стала ASCII7. В нее уже вошли прописные буквы английского алфавита, арабские цифры, знаки препинания. Затем на ее базе была разработана ASCII8, в которым уже стало возможным хранение [math]256[/math] символов: [math]128[/math] основных и еще столько же расширенных. Первая часть таблицы осталась без изменений, а вторая может иметь различные варианты (каждый имеет свой номер). Эта часть таблицы стала заполняться символами национальных алфавитов.
Но для многих языков (например, арабского, японского, китайского) [math]256[/math] символов недостаточно, поэтому развитие кодировок продолжалось, что привело к появлению UNICODE.
Кодировки стандарта ASCII [ править ]
Определение: |
ASCII — таблицы кодировок, в которых содержатся основные символы (английский алфавит, цифры, знаки препинания, символы национальных алфавитов(свои для каждого региона), служебные символы) и длина кода каждого символа [math]n = 8[/math] бит. |
Кодировки стандарта ASCII ( [math]8[/math] бит):
Структурные свойства таблицы [ править ]
Кодировки стандарта UNICODE [ править ]
Юникод или Уникод (англ. Unicode) — это промышленный стандарт обеспечивающий цифровое представление символов всех письменностей мира, и специальных символов.
Стандарт предложен в 1991 году некоммерческой организацией «Консорциум Юникода» (англ. Unicode Consortium, Unicode Inc.). Применение этого стандарта позволяет закодировать очень большое число символов из разных письменностей. Стандарт состоит из двух основных разделов: универсальный набор символов (англ. UCS, universal character set) и семейство кодировок (англ. UTF, Unicode transformation format). Универсальный набор символов задаёт однозначное соответствие символов кодам — элементам кодового пространства, представляющим неотрицательные целые числа.Семейство кодировок определяет машинное представление последовательности кодов UCS.
Коды в стандарте Unicode разделены на несколько областей. Область с кодами от U+0000 до U+007F содержит символы набора ASCII с соответствующими кодами. Далее расположены области знаков различных письменностей, знаки пунктуации и технические символы. Под символы кириллицы выделены области знаков с кодами от U+0400 до U+052F, от U+2DE0 до U+2DFF, от U+A640 до U+A69F. Часть кодов зарезервирована для использования в будущем.
Кодовое пространство [ править ]
Хотя формы записи UTF-8 и UTF-32 позволяют кодировать до [math]2^<31>[/math] [math](2\ 147\ 483\ 648)[/math] кодовых позиций, было принято решение использовать лишь [math]1\ 112\ 064[/math] для совместимости с UTF-16. Впрочем, даже и этого на текущий момент более чем достаточно — в версии 6.0 используется чуть менее [math]110\ 000[/math] кодовых позиций ( [math]109\ 242[/math] графических и [math]273[/math] прочих символов).
Кодовое пространство разбито на [math]17[/math] плоскостей (англ. planes) по [math]2^<16>[/math] [math](65\ 536)[/math] символов. Нулевая плоскость называется базовой, в ней расположены символы наиболее употребительных письменностей. Первая плоскость используется, в основном, для исторических письменностей, вторая — для для редко используемых иероглифов китайского письма, третья зарезервирована для архаичных китайских иероглифов. Плоскости [math]15[/math] и [math]16[/math] выделены для частного употребления.
Плоскости Юникода | ||
---|---|---|
Плоскость | Название | Диапазон символов |
Plane 0 | Basic multilingual plane (BMP) | U+0000…U+FFFF |
Plane 1 | Supplementary multilingual plane (SMP) | U+10000…U+1FFFF |
Plane 2 | Supplementary ideographic plane (SIP) | U+20000…U+2FFFF |
Planes 3-13 | Unassigned | U+30000…U+DFFFF |
Plane 14 | Supplementary special-purpose plane (SSP) | U+E0000…U+EFFFF |
Planes 15-16 | Supplementary private use area (S PUA A/B) | U+F0000…U+10FFFF |
Модифицирующие символы [ править ]
Графические символы в Юникоде делятся на протяжённые и непротяжённые. Непротяжённые символы при отображении не занимают дополнительного места в строке. К примеру, к ним относятся знак ударения. Протяжённые и непротяжённые символы имеют собственные коды, но последние не могут встречаться самостоятельно. Протяжённые символы называются базовыми (англ. base characters), а непротяженные — модифицирующими (англ. combining characters). Например символ «Й» (U+0419) может быть представлен в виде базового символа «И» (U+0418) и модифицирующего символа « ̆» (U+0306).
Способы представления [ править ]
Юникод имеет несколько форм представления (англ. Unicode Transformation Format, UTF): UTF-8, UTF-16 (UTF-16BE, UTF-16LE) и UTF-32 (UTF-32BE, UTF-32LE). Была разработана также форма представления UTF-7 для передачи по семибитным каналам, но из-за несовместимости с ASCII она не получила распространения и не включена в стандарт.
UTF-8 [ править ]
Символы UTF-8 получаются из Unicode cледующим образом:
Unicode | UTF-8 | Представленные символы |
---|---|---|
0x00000000 — 0x0000007F | 0xxxxxxx | ASCII, в том числе английский алфавит, простейшие знаки препинания и арабские цифры |
0x00000080 — 0x000007FF | 110xxxxx 10xxxxxx | кириллица, расширенная латиница, арабский алфавит, армянский алфавит, греческий алфавит, еврейский алфавит и коптский алфавит; сирийское письмо, тана, нко; Международный фонетический алфавит; некоторые знаки препинания |
0x00000800 — 0x0000FFFF | 1110xxxx 10xxxxxx 10xxxxxx | все другие современные формы письменности, в том числе грузинский алфавит, индийское, китайское, корейское и японское письмо; сложные знаки препинания; математические и другие специальные символы |
0x00010000 — 0x001FFFFF | 11110xxx 10xxxxxx 10xxxxxx 10xxxxxx | музыкальные символы, редкие китайские иероглифы, вымершие формы письменности |
111111xx | служебные символы c, d, e, f |
Несмотря на то, что UTF-8 позволяет указать один и тот же символ несколькими способами, только наиболее короткий из них правильный. Остальные формы, называемые overlong sequence, отвергаются по соображениям безопасности.
Принцип кодирования [ править ]
Правила записи кода одного символа в UTF-8 [ править ]
1. Если размер символа в кодировке UTF-8 = [math]1[/math] байт
Код имеет вид (0aaa aaaa), где «0» — просто ноль, остальные биты «a» — это код символа в кодировке ASCII;
2. Если размер символа в кодировке в UTF-8 [math]\gt 1[/math] байт (то есть от [math]2[/math] до [math]6[/math] ):
2.1 Первый байт содержит количество байт символа, закодированное в единичной системе счисления; 2.2 «0» — бит терминатор, означающий завершение кода размера 2.3 далее идут значащие байты кода, которые имеют вид (10xx xxxx), где «10» — биты признака продолжения, а «x» — значащие биты.
В общем случае варианты представления одного символа в кодировке UTF-8 выглядят так:
Определение длины кода в UTF-8 [ править ]
Количество байт UTF-8 | Количество значащих бит |
---|---|
[math]1[/math] | [math]7[/math] |
[math]2[/math] | [math]11[/math] |
[math]3[/math] | [math]16[/math] |
[math]4[/math] | [math]21[/math] |
[math]5[/math] | [math]26[/math] |
[math]6[/math] | [math]31[/math] |
[math]C = 7[/math] при [math]n=1[/math]
[math]C = n\cdot5+1[/math] при [math]n\gt 1[/math]
UTF-16 [ править ]
UTF-16LE и UTF-16BE [ править ]
Один символ кодировки UTF-16 представлен последовательностью двух байт или двух пар байт. Который из двух байт в словах идёт впереди, старший или младший, зависит от порядка байт. Подробнее об этом будет сказано ниже.
UTF-32 [ править ]
UTF-32 — один из способов кодирования символов из Юникод, использующий для кодирования любого символа ровно [math]32[/math] бита. Остальные кодировки, UTF-8 и UTF-16, используют для представления символов переменное число байт. Символ UTF-32 является прямым представлением его кодовой позиции (англ. code point).
Главный недостаток UTF-32 — это неэффективное использование пространства, так как для хранения символа используется четыре байта. Символы, лежащие за пределами нулевой (базовой) плоскости кодового пространства редко используются в большинстве текстов. Поэтому удвоение, в сравнении с UTF-16, занимаемого строками в UTF-32 пространства не оправдано.
Порядок байт [ править ]
В современной вычислительной технике и цифровых системах связи информация обычно представлена в виде последовательности байт. В том случае, если число не может быть представлено одним байтом, имеет значение в каком порядке байты записываются в памяти компьютера или передаются по линиям связи. Часто выбор порядка записи байт произволен и определяется только соглашениями.
[math]M = \sum_^
Варианты записи [ править ]
Порядок от старшего к младшему [ править ]
В этом же виде (используя представление в десятичной системе счисления) записываются числа индийско-арабскими цифрами в письменностях с порядком знаков слева направо (латиница, кириллица). Для письменностей с обратным порядком (арабская) та же запись числа воспринимается как «от младшего к старшему».
Порядок байт от старшего к младшему применяется во многих форматах файлов — например, PNG, FLV, EBML.
Порядок от младшего к старшему [ править ]
В противоположность порядку big-endian, соглашение little-endian поддерживают меньше кросс-платформенных протоколов и форматов данных; существенные исключения: USB, конфигурация PCI, таблица разделов GUID, рекомендации FidoNet.
Переключаемый порядок [ править ]
Многие процессоры могут работать и в порядке от младшего к старшему, и в обратном, например, ARM, PowerPC (но не PowerPC 970), DEC Alpha, MIPS, PA-RISC и IA-64. Обычно порядок байт выбирается программно во время инициализации операционной системы, но может быть выбран и аппаратно перемычками на материнской плате. В этом случае правильнее говорить о порядке байт операционной системы. Переключаемый порядок байт иногда называют англ. bi-endian.
Смешанный порядок [ править ]
Смешанный порядок байт (англ. middle-endian) иногда используется при работе с числами, длина которых превышает машинное слово. Число представляется последовательностью машинных слов, которые записываются в формате, естественном для данной архитектуры, но сами слова следуют в обратном порядке.
В процессорах VAX и ARM используется смешанное представление для длинных вещественных чисел.
Различия [ править ]
Для записи длинных чисел (чисел, длина которых существенно превышает разрядность машины) обычно предпочтительнее порядок слов в числе little-endian (поскольку арифметические операции над длинными числами производятся от младших разрядов к старшим). Порядок байт в слове — обычный для данной архитектуры.
Маркер последовательности байт [ править ]
Для определения формата представления Юникода в начало текстового файла записывается сигнатура — символ U+FEFF (неразрывный пробел с нулевой шириной), также именуемый маркером последовательности байт (англ. byte order mark (BOM)). Это позволяет различать UTF-16LE и UTF-16BE, поскольку символа U+FFFE не существует.
Кодирование | Представление (Шестнадцатеричное) |
---|---|
UTF-8 | EF BB BF |
UTF-16 (BE) | FE FF |
UTF-16 (LE) | FF FE |
UTF-32 (BE) | 00 00 FE FF |
UTF-32 (LE) | FF FE 00 00 |
В кодировке UTF-8, наличие BOM не является существенным, поскольку, нет альтернативной последовательности байт. Когда BOM используется на страницах или редакторах для контента закодированного в UTF-8, иногда он может представить пробелы или короткие последовательности символов, имеющие странный вид (такие как ). Именно поэтому, при наличии выбора, для совместимости, как правило, лучше упустить BOM в UTF-8 контенте.Однако BOM могут еще встречаться в тексте закодированном в UTF-8, как побочный продукт перекодирования или потому, что он был добавлен редактором. В этом случае BOM часто называют подписью UTF-8.
Когда символ закодирован в UTF-16, его [math]2[/math] или [math]4[/math] байта можно упорядочить двумя разными способами (little-endian или big-endian). Изображение справа показывает это. Byte order mark указывает, какой порядок используется, так что приложения могут немедленно расшифровать контент. UTF-16 контент должен всегда начинатся с BOM.
BOM также используется для текста обозначенного как UTF-32. Аналогично UTF-16 существует два варианта четырёхбайтной кодировки — UTF-32BE и UTF-32LE. К сожалению, этот способ не позволяет надёжно различать UTF-16LE и UTF-32LE, поскольку символ U+0000 допускается Юникодом
Проблемы Юникода [ править ]
В Юникоде английское «a» и польское «a» — один и тот же символ. Точно так же одним символом (но отличающимся от «a» латинского) считаются русское «а» и сербское «а». Такой принцип кодирования не универсален; по-видимому, решения «на все случаи жизни» вообще не может существовать.