дешифратор двоичного кода микросхема
Дешифратор двоичного кода микросхема
Поиск по сайту
К561ИД1 К176ИД1(CD4028A, CD4028)
| |
Микросхемы К561ИД1 и К176ИД1 (CD4028A, CD4028) — универсальный дешифратор. Дешифраторы К561ИД1, К176ИД1 (CD4028A, CD4028) применяется для преобразования входного четырехразрядного двоично-десятичного кода в десятичный или четырехразрядного двоичного в октальный. Дешифраторы К561ИД1, К176ИД1 (CD4028A, CD4028) имеют десять выходов (при октальном, восьмеричном коде используются восемь выходов), а также четыре входа А — D (для получения остального кода необходимы только три входа А — С). Вход D, если на нём напряжение высокого уровня, используется как запрещающий при остальном преобразовании. Если вход D не используется, то на него следует подать ноль напряжения. Все состояния дешифраторов К561ИД1, К176ИД1 (CD4028A, CD4028) перечислены в таблице, где А — вход младшего разряда.
Время задержки распространения от входов до выходов не превышает 290 нс, время установления — менее 150 нс.
На рисунке показана схема преобразователя четырехразрядного кода в десятичный или шестнадцатиричный, т. е. гексадецимальный. Для этой схемы дана таблица кодов. В таблице в первых четырех колонках D—А последовательно перечислено 16 возрастающих состояний двоичного кода от 0000 до 1111. Последующие две колонки отведены гексадецимальным кодам: двоичному и коду Грея, колонки 7. 10 содержат четырехразрядные десятичные коды: код «без трех», код Грея «без трех», код Айкена, код формата 4-2—2—1, В колонке номеров выходов указаны выходные высокие уровни. Выбрав номер выхода N (от О до 15), по строке, где зафиксировано, что на этом выходе появилось напряжение высокого уровня, можем определить, какая цифра соответствует в данной ситуации каждому из шести вышеперечисленных кодов. В кодах «без трех» не используются три комбинации, где мало младших единиц В (или наоборот, мало младших нулей Н).
Зарубежным аналогом микросхемы К561ИД1 является микросхема CD4028A, а зарубежным аналогом микросхемы К176ИД1 является микросхема CD4028.
Дешифраторы. Виды двоичных дешифраторов
Дешифраторы позволяют преобразовывать одни виды бинарных кодов в другие. Например, преобразовывать позиционный двоичный код в линейный восьмеричный или шестнадцатеричный. Преобразование производится по правилам, описанным в таблицах истинности, поэтому построение дешифраторов не представляет трудностей. Для построения дешифратора можно воспользоваться правилами синтеза логических схем для произвольной таблицы истинности.
Десятичный дешифратор
Рассмотрим пример разработки схемы дешифратора из двоичного кода в десятичный. Десятичный код обычно отображается одним битом на одну десятичную цифру. В десятичном коде десять цифр, поэтому для отображения одного десятичного разряда требуется десять выходов дешифратора. Сигнал с этих выводов можно подать на десятичный индикатор. В простейшем случае над светодиодом можно просто подписать индицируемую цифру.Таблица истинности десятичного дешифратора приведена в таблице 1.
Таблица 1. Таблица истинности десятичного дешифратора.
Входы | Выходы | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
8 | 4 | 2 | 1 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
0 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
1 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
Для реализации принципиальной схемы дешифратора воспользуемся методом СДНФ, так как в его таблице истинности на каждом выходе присутствует всего одна логическая единица. В результате получим схему дешифратора, реализующего таблицу истинности, приведённую в таблице 1. Эта схема приведена на рисунке 1.
Рисунок 1. Принципиальная схема двоично-десятичного дешифратора
Как видно по принципиальной схеме дешифратора, для реализации каждой строки таблицы истинности потребовался логический элемент «4И». Логические элементы «ИЛИ» не потребовались, так как в таблице истинности на каждом выходе присутствует только одна логическая единица.
Дешифраторы выпускаются в виде отдельных микросхем или используются в составе более сложных микросхем. В настоящее время десятичные или восьмеричные дешифраторы используются в основном как составная часть других микросхем, таких как мультиплексоры, демультиплексоры, ПЗУ или ОЗУ.
Условно-графическое обозначение микросхемы дешифратора на принципиальных схемах приведено на рисунке 2. На этом рисунке приведено обозначение двоично-десятичного дешифратора, полная внутренняя принципиальная схема которого изображена на рисунке 1.
Рисунок 2. Условно-графическое обозначение двоично-десятичного дешифратора
Точно таким же образом можно получить принципиальную схему и для любого другого декодера (дешифратора). Наиболее распространены схемы восьмеричных и шестнадцатеричных дешифраторов. Для индикации такие дешифраторы в настоящее время практически не используются. В основном такие дешифраторы используются как составная часть более сложных цифровых модулей.
Семисегментный дешифратор
Для отображения десятичных и шестнадцатеричных цифр часто используется семисегментный индикатор. Изображение семисегментного индикатора и название его сегментов приведено на рисунке 3.
Рисунок 3. Изображение семисегментного индикатора и название его сегментов
Для изображения на таком индикаторе цифры 0 достаточно зажечь сегменты a, b, c, d, e, f. Для изображения цифры ‘1’ зажигают сегменты b и c. Точно таким же образом можно получить изображения всех остальных десятичных или шестнадцатеричных цифр. Все комбинации таких изображений получили название семисегментного кода.
Составим таблицу истинности дешифратора, который позволит преобразовывать двоичный код в семисегментный. Пусть сегменты зажигаются нулевым потенциалом. Тогда таблица истинности семисегментного дешифратора примет вид, приведенный в таблице 2. Конкретное значение сигналов на выходе дешифратора зависит от схемы подключения сегментов индикатора к выходу микросхемы. Эти схемы мы рассмотрим позднее, в главе, посвящённой отображению различных видов информации.
Таблица 2. Таблица истинности семисегментного дешифратора
Входы | Выходы | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
8 | 4 | 2 | 1 | a | b | c | d | e | f | g |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 1 | 1 |
0 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 0 |
0 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 1 | 1 | 0 |
0 | 1 | 0 | 0 | 1 | 0 | 0 | 1 | 1 | 0 | 0 |
0 | 1 | 0 | 1 | 0 | 1 | 0 | 0 | 1 | 0 | 0 |
0 | 1 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 1 | 1 | 0 | 0 | 0 | 1 | 1 | 1 | 1 |
1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
1 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
В соответствии с принципами построения произвольной таблицы истинности по произвольной таблице истинности получим принципиальную схему семисегментного дешифратора, реализующего таблицу истинности, приведённую в таблице 2. На этот раз не будем подробно расписывать процесс разработки схемы. Полученная принципиальная схема семисегментного дешифратора приведена на рисунке 4.
Рисунок 4. Принципиальная схема семисегментного дешифратора
Для облегчения понимания принципов работы схемы на выходе логических элементов «И» показаны номера строк таблицы истинности, реализуемые ими.
Например, на выходе сегмента ‘a’ логическая единица появится только при подаче на вход комбинации двоичных сигналов 0001 (1) и 0100 (4). Это осуществляется объединением соответствующий цепей элементом «2ИЛИ». На выходе сегмента ‘b’ логическая единица появится только при подаче на вход комбинации двоичных сигналов 0101 (5) и 0110 (6), и так далее.
В настоящее время семисегментные дешифраторы выпускаются в виде отдельных микросхем или используются в виде готовых блоков составе других микросхем. Условно-графическое обозначение микросхемы семисегментного дешифратора приведено на рисунке 5.
Рисунок 5. Условно-графическое обозначение семисегментного дешифратора.
В качестве примера семисегментных дешифраторов можно назвать такие микросхемы отечественного производства как К176ИД3. В современных цифровых схемах семисегментные дешифраторы обычно входят в состав больших интегральных схем.
Понравился материал? Поделись с друзьями!
Вместе со статьей «Виды двоичных дешифраторов» читают:
Релейно-диодный двоично-семисегментный дешифратор
А поскольку каждый сегмент наскального индикатора можно питать напряжением любой полярности, матрицу эту можно ещё оптимизировать. Посмотрите, как мастер реализовал её выходы на диодах, включённых в разные стороны. Но и это ещё не всё. К средней точке двуполярного источника питания он подключил только общий вывод индикатора. А реле питаются напряжением, взятым между полюсами этого источника, то есть, 7,2В. Для организации входов дешифратора использованы обмотки реле, отвязанные от всей остальной схемы. В общем, глядите:
В другом кнопки оставил, а диоды матрицы заменил на старые светодиоды в металлических корпусах, это могут быть, например, АЛ102:
К ней можно подключить проверочную плату с формирователем двоичного кода галетным переключателем:
А можно набрать из них многоразрядный дисплей со встроенными дешифраторами:
Давайте посмотрим, как Yann Guidon собирает один из вариантов устройства. Начинает он с приобретения индикатора и десяти реле:
Впаивает два устройства ввода на выбор: кнопки и галетный переключатель со встроенным двоичным кодером, а также первые четыре реле, к обмоткам которых и будут подключаться эти устройства ввода:
Устанавливает остальные реле, соединяет их по показанной выше схеме, а выходы дешифратора, генерирующего промежуточный код, нагружает светодиодами для отладки. На этом этапе двуполярный источник не обязателен, поскольку индикатора, общий вывод которого надо соединить со средней точкой источника питания, ещё нет.
Впаивает диодную матрицу и индикатор. Всё работает, но матрица ещё не оптимизирована, диодов в ней больше, чем могло бы быть:
И наконец, оптимизирует её, получая то, что вы уже видели в начале статьи.
И дисплей как в старых фантастических фильмах готов!
Принцип работы дешифратора
В компьютеризированных системах управления, ЭВМ и цифровой технике одними из важнейших элементов построения электронных микросхем являются дешифраторы.
Так, дешифратор (или декодер) – это логическое комбинационное устройство, служащее для преобразования двойного двоичного кода в сигнал управления в десятичной системе исчисления на одном из выходов.
Принцип работы дешифратора
Обычно дешифратор имеет n-входов и 2n выходов, при этом n — разрядность дешифрируемого кода. Определенной комбинации на входе соответствует активный сигнал на одном из выходов, или при сигнале «00» — мы имеем «1» на нулевом выходе схемы; при «01» имеем — «1» на первом выходе, сигнал «10» трансформируется в 1 – на втором выходе и т.д. Другими словами, эти элементы схем могут преобразовывать двоичный код в различные системы исчисления (это может быть десятичная, шестнадцатеричная и пр.), поскольку все зависит от конкретной задачи, выполняемой микросхемой.
В стандартные типы дешифраторов входят модели на 4, 8 и 16 выходов, при этом на выходе — 2, 3 и 4 разрядов входного кода. Входы дешифраторов называют часто адресными, и на схемах нумеруют 1,2,4,8, при этом цифра соответствует весу двоичного кода. Сигнал на выходе 1,2,4,8 устанавливает номер активного выхода. С1,С2 – входы разрешения (или стробирования), которые работают с условием «и». Сигнал на этом входе сообщает о моменте срабатывания дешифратора. Также их можно использовать для увеличения разрядности логических устройств.
Основные разновидности дешифратора
Существует несколько разновидностей дешифраторов:
Матричные являются типовыми, наиболее простыми разновидностями дешифраторов, на их основе строятся различные более сложные схемы. В прямоугольных реализуется ступенчатая дешифрация. Входной сигнал условно разбивается на группы, каждая из которых обрабатывается отдельными матричными дешифраторами. На последующих ступенях дешифрации (второй, третьей и т.п.) формируется произведение полученных сигналов. Главным преимуществом пирамидальных дешифраторов считается простота наращивания числа входов, а недостатком – аппаратная неизбыточность.
Особенности дешифраторов
Выпускают дешифраторы по виду интегральных микросхем. К примеру, К500ИД162М – позволяет трансформировать двоичный код в восьмеричный. Другие типы дешифраторов могут преобразовывать двоичное исчисление в десятеричное (К176ИД1 и К155ИД1). Отечественной промышленностью выпускаются дешифраторы со счетчиками, они позволяют управлять семисегментными цифровыми индикаторами. На микросхемах их обычно обозначают буквенным сочетанием ДИ.
Принцип работы дешифратора
Дешифраторы используются для преобразования двоичных чисел в десятичные числа и находят применение в печатающих устройствах. В таких устройствах двоичное число, поступая на вход дешифратора, вызывает появление десятичного числа только на одном определённом его выходе. На рис.9.11 приведено символическое изображение дешифратора и его таблица истинносити. Символ DC образован от английского слова Decoder. Слева показаны входы, на которых отмечены весовые коэффициенты двоичного кода, справа выходы десятичных чисел. На каждом входе образуется десятичное число при определенных комбинациях входного кода.
Рис.9.11. Символическое изображение дешифратора и его таблица истинности
Рассмотрим построение дешифратора по его таблице истинности.
Значения входных переменных определяются логическими выражениями:
Используя логические выражения (9.1), построим логическую схему дешифратора.
На рис.9.12 показана логическая схема дешифратора, построенного на логических элементах И и инверторах НЕ.
Рис.9.12. Логическая схема дешифратора
Дешифраторы и индикаторы
Для удобства использования оператором число, записанное в регистре или счетчике в двоичной системе необходимо перевести в удобную форму записи в виде арабских цифр. Данная операция производится с помощью дешифраторов, которые превращают двоичную запись так, чтобы на каком – либо индикаторе отображалась та или другая цифра. Рассмотрим для начала принцип построения индикаторов.
Рассмотрим на примере жидкокристаллического индикатора, который широко применяется в микрокалькуляторах, электронных часах и прочих устройствах. Схема этого индикатора приведена ниже:
Под действием электрического поля сем элементов, которые создают цифру «8», путем изменения своей прозрачности. Если к примеру, подать напряжение между элементом 0 и тремя соединенными вместе элементами 2,3,5, получим цифру 7, при соединении вместе элементов 3 и 5 получим 1. При различных комбинациях будет получать различные цифры на табло.
В цифровых вольтметрах и прочих лабораторных установках широко применяют газоразрядные индикаторы, показанные ниже:
В стеклянном баллоне содержится цилиндрический металлический анод, внутри которого на двух изолированных стойках набраны электроды с тонкого металлического провода в виде цифр от нуля до девяти (на рисунке выше показаны только четыре первых). Баллон заполняют инертным газом, например неоном. Если приложить между анодом и каким – то из этих электродов напряжение (минус к цифре из провода), то в колбе появится тлеющий разряд, во время которого поверхность катода (то есть цифры) будет ярко гореть. Электроды, на которые напряжение не подано, обычно не светятся, но так как они выполнены из тонкой проволоки они не будут мешать видеть через стекло ту цифру, которая в данный момент светится. Устройство, которое будет подавать логическую единицу на нужный электрод и будет называться дешифратором.
Одна из возможных схем дешифратора приведена ниже:
Слева вертикально размещены триггеры двоично – десятичного счетчика. Каждый из триггеров имеет два выхода – прямой и инверсный (
во втором и так далее ). Сверху изображен горизонтальный ряд логических элементов типа «И», которые имеют по четыре входа каждый. Их выходы (X0, Х1 и так далее) соединены с соответствующими электродами газоразрядного индикатора. Схема должна работать таким образом, чтоб при наличии на триггере счетчика конкретного числа логическая единица была только на выходе того элемента, что соединен с соответствующим электродом индикатора, а на входах других элементов (то есть и на других электродах индикатора) должны быть логические нули.
Приведенная выше схема соединения (с учетом пунктирных связей) обеспечивает данные требования. Так, при записи в триггерах цифры 5 (в двоичном коде 0101), на выходе первого разряда будем иметь
Внимательно присмотревшись к схеме соединения увидим, что у всех логических элементов кроме пятого, хоть на одном из четырех входов будет ноль, а поэтому и на их выходах будут нули, и только у пятого элемента на всех четырех входах будут единицы. Можно убедится, что и при других цифрах в счетчике логическая единица будет только на соответствующем электроде индикатора. Стоит учесть, что дешифратор построен для счетчиков с естественным порядком подсчета.
2.4.1 Дешифраторы и преобразователи кодов.
2.4.1. Дешифраторы и преобразователи кодов
Согласование выходов микросхем К176ИД2 с семисегментными индикаторами может производиться так же, как и выходов счетчиков К176ИЕЗ и К176ИЕ4. Ток короткого замыкания микросхем К176ИД2 выше, чем у счетчиков, и численно в миллиамперах примерно равен напряжению питания в вольтах. Поэтому можно непосредственно подключать выходы микросхем К176ИД2 к электродам полупроводниковых семисегментных индикаторов серий АЛ305, АЛС321, АЛС324, помня, конечно, о том, что разброс яркости свечения при этом может быть заметен, а сама яркость может быть меньше номинальной. МикросхемаК176ИДЗ имеет ту же разводку выводов и ту же логику работы, что и К176ИД2. Отличие заключается в том, что выходные каскады микросхемы выполнены с «открытым» стоком, поэтому их можно подключать непосредственно к анодам вакуумных люминесцентных индикаторов (рис. 179 с исключенными сборками DA1, DA2). Управляющий вход S микросхемы К176ИДЗ должен быть при этом соединен с общим проводом.
Подключение жидкокристаллического индикатора к микросхеме 564ИД4 проиллюстрировано на рис. 236. На вход S микросхемы подается меандр с частотой 30. 200 Гц, этот сигнал проходит без инверсии на выход Р, увеличиваясь по амплитуде, как это описано выше для микросхемы 564УМ1. При подаче на входы 1-8 двоичного кода знака на выходах, соответствующих
Нагрузочная способность микросхемы такая же, как у 564УМ1, что позволяет использовать микросхему для управления светодиодными индикаторами как с общим анодом, так и с общим катодом без токоограничительных резисторов при напряжении питания 5. 10 В и с ограничительными резисторами при 10. 15 В.
Микросхема564ИД5 отличается от 564ИД4 наличием на ее входах 1-2-4-8 статического регистра хранения информации со входом записи С и отсутствием выхода Р (рис. 235). Запись в регистр происходит так же, как и в регистр микросхем К176ИД2 и К176ИДЗ, при
подаче на вход С импульса положительной полярности, регистр при этом «прозрачен» и пропускает на свои выходы (на входы преобразователя кода) информацию со входов. В режим хранения регистр переходит в момент спада входного импульса.
Интересно отметить, что одноименные входы и выходы микросхем К176ИД2, К176ИДЗ, 564ИД4,564ИД5 разведены на выводы с одинаковыми номерами.
На рис. 237 приведен пример использования микросхем 564ИД5 и 564УМ1 для управления индикатором ИЖКЦ2-5/12. Этот пятиразрядный индикатор предназначен для использования в цифровом частотомере и, кроме возможности индикации пяти цифр, имеет четыре десятичные запятые (сегменты h) и символ «Гц», перед которым могут индицироваться символы «к» или «М».
десятичному эквиваленту входного кода, поданному на входы 1 и 2. При лог. 1 на входе S на всех выходах дешифратора лог. 0.
При необходимости построения дешифратора на 8 выходов из микросхем КР1561ИД6 или КР1561ИД7 их следует дополнить одним инвертором (рис. 240).
Микросхема564ИК2 (рис. 241) не является комбинационной, так же как при строгом отношении не являются комбинационными микросхемы К176ИД2, К176ИДЗ и 564ИД5, содержащие регистры хранения информации, но их удобно рассматривать в этом разделе как наиболее близкие к дешифраторам и преобразователям кода. Микросхема 564ИК2 предназначена для управления пятиразрядным полупроводниковым семисегментным индикатором или пятью отдельными индикаторами в динамическом режиме. Она содержит преобразователь двоичного кода 1-2-4-8 в код семисегментного индикатора (входы 1, 2, 4, 8 и Е, выходы а, Ь, с, d, e, f, g), генератор на инвертирующем триггере Шмитта (вход Т, выход G), счетчик-делитель на 5, вход которого подключен к выходу генератора. В свою очередь
Преобразователь двоичного кода в код семисегментного индикатора имеет выходы с открытым стоком транзисторов с каналом р-типа. Он обеспечивает на семисегментном индикаторе с общим катодом индикацию цифр 0-9 при подаче на его входы соответствующего двоичного кода и букв «A», «b»,
«С», «d», «Е>>, «F» при подаче кода, соответствующего десятичным числам от 10 до 15. Форма индицируемых букв показана на рис. 242.
Преобразователь по техническим условиям обеспечивает при вытекающем выходном токе 10 мА и напряжении питания 10 В выходное напряжение не менее 9 В. В те моменты, когда на выходах преобразователя нет лог. 1, выходы находятся в высокоимпедансном состоянии.
Разрешение на включение индикатора обеспечивается подачей на вход Е лог. 1, при лог. 0 на этом входе происходит гашение индикатора.
Для нормальной работы генератора к его выводам следует подключить RC-цепь (резистор между выводами Т и G, конденсатор между выводом
Т и общим проводом). Сопротивление резистора может составлять 10 кОм. 5 МОм, емкость конденсатора 100 пф и более. Частота генерации может быть приближенно определена по формуле:
Нагрузочная способность выходов счетчика 1, 2, 4 составляет 1,3 мА при напряжении питания 10 В и выходном напряже-
нии 1 В в состоянии лог. 0, такая же нагрузочная способность и при выходном напряжении 9 В в состоянии лог. 1.
Входные импульсы тактовой частоты для работы счетчика могут быть поданы от внешнего генератора на вход Т, в этом случае резистор и конденсатор не нужны, выход G не используется.
рис.244, и элемента DD1.1 рис. 245. В последнем случае элемент DD1.1 должен иметь не менее двух входов и выполнять функцию ИЛИ-НЕ.
Аналогично может быть подключен и пятиразрядный полупроводниковый индикатор АЛС311А.
Полупроводниковые индикаторы можно заменить на вакуумные люминесцентные индикаторы (или один многоразрядный), включив
Неиспользуемые входы микросхемы в схемах рис. 248 и 249 следует соединить с общим проводом или плюсом питания.