дополнительный код в десятичную систему

Обратный и дополнительный коды двоичных чисел

дополнительный код в десятичную систему. l4 image002. дополнительный код в десятичную систему фото. дополнительный код в десятичную систему-l4 image002. картинка дополнительный код в десятичную систему. картинка l4 image002. Пример перевода x1=10101-пр=010101 x2=-11101-пр=111101 x3=0,101-пр=0,101 x4=-0,111-пр=1,111 2) Обратный код числа, используется для выполнения арифметических операций вычитания, умножения, деления, через сложение. Обратный код положительного числа совпадает с его прямым кодом, обратный код отрицательного числа формируется по правилам: в знаковом разряде записывается “1”; цифровые значения меняются на противоположные.дополнительный код в десятичную систему. equation. дополнительный код в десятичную систему фото. дополнительный код в десятичную систему-equation. картинка дополнительный код в десятичную систему. картинка equation. Пример перевода x1=10101-пр=010101 x2=-11101-пр=111101 x3=0,101-пр=0,101 x4=-0,111-пр=1,111 2) Обратный код числа, используется для выполнения арифметических операций вычитания, умножения, деления, через сложение. Обратный код положительного числа совпадает с его прямым кодом, обратный код отрицательного числа формируется по правилам: в знаковом разряде записывается “1”; цифровые значения меняются на противоположные. дополнительный код в десятичную систему. distance. дополнительный код в десятичную систему фото. дополнительный код в десятичную систему-distance. картинка дополнительный код в десятичную систему. картинка distance. Пример перевода x1=10101-пр=010101 x2=-11101-пр=111101 x3=0,101-пр=0,101 x4=-0,111-пр=1,111 2) Обратный код числа, используется для выполнения арифметических операций вычитания, умножения, деления, через сложение. Обратный код положительного числа совпадает с его прямым кодом, обратный код отрицательного числа формируется по правилам: в знаковом разряде записывается “1”; цифровые значения меняются на противоположные.дополнительный код в десятичную систему. projection image013. дополнительный код в десятичную систему фото. дополнительный код в десятичную систему-projection image013. картинка дополнительный код в десятичную систему. картинка projection image013. Пример перевода x1=10101-пр=010101 x2=-11101-пр=111101 x3=0,101-пр=0,101 x4=-0,111-пр=1,111 2) Обратный код числа, используется для выполнения арифметических операций вычитания, умножения, деления, через сложение. Обратный код положительного числа совпадает с его прямым кодом, обратный код отрицательного числа формируется по правилам: в знаковом разряде записывается “1”; цифровые значения меняются на противоположные. дополнительный код в десятичную систему. piramid. дополнительный код в десятичную систему фото. дополнительный код в десятичную систему-piramid. картинка дополнительный код в десятичную систему. картинка piramid. Пример перевода x1=10101-пр=010101 x2=-11101-пр=111101 x3=0,101-пр=0,101 x4=-0,111-пр=1,111 2) Обратный код числа, используется для выполнения арифметических операций вычитания, умножения, деления, через сложение. Обратный код положительного числа совпадает с его прямым кодом, обратный код отрицательного числа формируется по правилам: в знаковом разряде записывается “1”; цифровые значения меняются на противоположные. дополнительный код в десятичную систему. line. дополнительный код в десятичную систему фото. дополнительный код в десятичную систему-line. картинка дополнительный код в десятичную систему. картинка line. Пример перевода x1=10101-пр=010101 x2=-11101-пр=111101 x3=0,101-пр=0,101 x4=-0,111-пр=1,111 2) Обратный код числа, используется для выполнения арифметических операций вычитания, умножения, деления, через сложение. Обратный код положительного числа совпадает с его прямым кодом, обратный код отрицательного числа формируется по правилам: в знаковом разряде записывается “1”; цифровые значения меняются на противоположные.дополнительный код в десятичную систему. p image002. дополнительный код в десятичную систему фото. дополнительный код в десятичную систему-p image002. картинка дополнительный код в десятичную систему. картинка p image002. Пример перевода x1=10101-пр=010101 x2=-11101-пр=111101 x3=0,101-пр=0,101 x4=-0,111-пр=1,111 2) Обратный код числа, используется для выполнения арифметических операций вычитания, умножения, деления, через сложение. Обратный код положительного числа совпадает с его прямым кодом, обратный код отрицательного числа формируется по правилам: в знаковом разряде записывается “1”; цифровые значения меняются на противоположные.

Пример перевода
x1=10101-[x1]пр=010101
x2=-11101-[x2]пр=111101
x3=0,101-[x3]пр=0,101
x4=-0,111-[x4]пр=1,111
2) Обратный код числа, используется для выполнения арифметических операций вычитания, умножения, деления, через сложение. Обратный код положительного числа совпадает с его прямым кодом, обратный код отрицательного числа формируется по правилам: в знаковом разряде записывается “1”; цифровые значения меняются на противоположные.

3) Дополнительный код числа, имеет такое же назначение, как и обратный код числа. Формируется по следующим правилам: положительные числа в дополнительном коде выглядят также как и в обратном и в прямом коде, т.е. не изменяются. Отрицательные числа кодируются следующим образом: к обратному коду отрицательного числа (к младшему разряду) добавляется 1, по правилу двоичной арифметики.

Пример перевода
x1=10101-[x1]доп=010101
x2=-11101-[x2]обр=100010+1-[x2]доп=100011
x3=0,101-[x3]доп=0,101
x4=-0,111-[x4]обр=1,000+1-[x4]доп=1,001
Для выявления ошибок при выполнении арифметических операций используются также модифицированные коды: модифицированный прямой; модифицированный обратный; модифицированный дополнительный, для которых под код знака числа отводится два разряда, т.е. “+”=00; ”-”=11. Если в результате выполнения операции в знаковом разряде появляется комбинация 10 или 01 то для машины это признак ошибки, если 00 или 11 то результат верный.

Источник

Дополнительный код (представление числа)

Дополнительный код (дополнение до 2) двоичного числа получается добавлением 1 к младшему значащему разряду его дополнения до 1. [1]

Дополнение до 2 двоичного числа определяется как величина полученная вычитанием числа из наибольшей степени двух (из 2 N для N-битного дополнения до 2).

Содержание

Представление отрицательного числа в дополнительном коде

При записи числа в дополнительном коде старший разряд является знаковым. Если его значение равно 0, то в остальных разрядах записано положительное двоичное число, совпадающее с прямым кодом. Если число, записанное в прямом коде, отрицательное, то все разряды числа инвертируются, а к результату прибавляется 1. К получившемуся числу дописывается старший (знаковый) разряд, равный 1.

Двоичное 8-ми разрядное число со знаком в дополнительном коде может представлять любое целое в диапазоне от −128 до +127. Если старший разряд равен нулю, то наибольшее целое число, которое может быть записано в оставшихся 7 разрядах равно дополнительный код в десятичную систему. 61ffa817e9f9d35e10fc0ed26e1206e3. дополнительный код в десятичную систему фото. дополнительный код в десятичную систему-61ffa817e9f9d35e10fc0ed26e1206e3. картинка дополнительный код в десятичную систему. картинка 61ffa817e9f9d35e10fc0ed26e1206e3. Пример перевода x1=10101-пр=010101 x2=-11101-пр=111101 x3=0,101-пр=0,101 x4=-0,111-пр=1,111 2) Обратный код числа, используется для выполнения арифметических операций вычитания, умножения, деления, через сложение. Обратный код положительного числа совпадает с его прямым кодом, обратный код отрицательного числа формируется по правилам: в знаковом разряде записывается “1”; цифровые значения меняются на противоположные., что равно 127.

Десятичное
представление
Код двоичного представления (8 бит)
прямойобратныйдополнительный
127011111110111111101111111
1000000010000000100000001
0000000000000000000000000
-01000000011111111
-1100000011111111011111111
-2100000101111110111111110
-3100000111111110011111101
-4100001001111101111111100
-5100001011111101011111011
-6100001101111100111111010
-7100001111111100011111001
-8100010001111011111111000
-9100010011111011011110111
-10100010101111010111110110
-11100010111111010011110101
-127111111111000000010000001
-12810000000

Дополнительный код для десятичных чисел

Тот же принцип можно использовать и в компьютерном представлении десятичных чисел: для каждого разряда цифра X заменяется на 9−X, и к получившемуся числу добавляется 1. Например, при использовании четырёхзначных чисел −0081 заменяется на 9919 (9919+0081=0000, пятый разряд выбрасывается).

При применении той же идеи к привычной 10-ричной системе счисления получится (например, для гипотетического процессора использующего 10-ричную систему счисления):

10-ричная система счисления
(«обычная» запись)
10-ричная система счисления,
дополнительный код
..
130013
120012
110011
100010
90009
80008
..
20002
10001
00000
-19999
-29998
-39997
-49996
..
-99991
-109990
-119989
-129988
..

Преобразование в дополнительный код

Преобразование числа из прямого кода в дополнительный осуществляется по следующему алгоритму.

Пример. Преобразуем отрицательное число −5, записанное в прямом коде, в дополнительный. Прямой код числа −5, взятого по модулю:

Инвертируем все разряды числа, получая таким образом обратный код:

Добавим к результату 1

Допишем слева знаковый единичный разряд

Для обратного преобразования используется тот же алгоритм. А именно:

Инвертируем все разряды числа, получая таким образом обратный код:

Добавим к результату 1 и проверим, сложив с дополнительным кодом

p-адические числа

В системе p-адических чисел изменение знака числа осуществляется преобразованием числа в его дополнительный код. Например, если используется 5-ричная система счисления, то число, противоположное 1000. (1) равно 4444. (−1).

Источник

Перевод чисел из одной системы счисления в другую

Данный конвертер переводит числа между наиболее популярными системами счисления: десятичной, двоичной, восьмеричной, шестнадцатеричной.

Существуют и другие системы счисления, но мы не стали включать их в конвертер из-за низкой популярности.

Для указания системы счисления при записи числа используется нижний индекс, который ставится после числа:
20010 = 110010002 = 3108 = C816

Кратко об основных системах счисления

Десятичная система счисления. Используется в повседневной жизни и является самой распространенной. Все числа, которые нас окружают представлены в этой системе. В каждом разряде такого числа может использоваться только одна цифра от 0 до 9.

Двоичная система счисления. Используется в вычислительной технике. Для записи числа используются цифры 0 и 1.

Восьмеричная система счисления. Также иногда применяется в цифровой технике. Для записи числа используются цифры от 0 до 7.

Перевод в десятичную систему счисления

Перевод из десятичной системы счисления в другие

Делим десятичное число на основание системы, в которую хотим перевести и записываем остатки от деления. Запишем полученные остатки в обратном порядке и получим искомое число.

Переведем число 37510 в восьмеричную систему:

Перевод из двоичной системы в восьмеричную

Так же как и в первом способе разбиваем число на группы. Но вместо преобразований в скобках просто заменим полученные группы (триады) на соответствующие цифры восьмеричной системы, используя таблицу триад:

Перевод из двоичной системы в шестнадцатеричную

Также как и в первом способе разбиваем число на группы по 4 цифры. Заменим полученные группы (тетрады) на соответствующие цифры шестнадцатеричной системы, используя таблицу тетрад:

Тетрада0000000100100011010001010110011110001001101010111100110111101111
Цифра0123456789ABCDEF

Перевод из восьмеричной системы в двоичную

Каждый разряд восьмеричного числа будем делить на 2 и записывать остатки в обратном порядке, формируя группы по 3 разряда двоичного числа. Если в группе получилось меньше 3 разрядов, тогда дополняем нулями. Записываем все группы по порядку, отбрасываем ведущие нули, если имеются, и получаем двоичное число.

Используем таблицу триад:

Каждую цифру исходного восьмеричного числа заменяется на соответствующие триады. Ведущие нули самой первой триады отбрасываются.

Перевод из шестнадцатеричной системы в двоичную

Аналогично переводу из восьмеричной в двоичную, только группы по 4 разряда.

Используем таблицу тетрад:

Цифра0123456789ABCDEF
Тетрада0000000100100011010001010110011110001001101010111100110111101111

Каждую цифру исходного числа заменяется на соответствующие тетрады. Ведущие нули самой первой тетрады отбрасываются.

Перевод из восьмеричной системы в шестнадцатеричную и наоборот

Такую конвертацию можно осуществить через промежуточное десятичное или двоичное число. То есть исходное число сначала перевести в десятичное (или двоичное), и затем полученный результат перевести в конечную систему счисления.

Источник

Дополнительный код (представление числа)

Дополнительный код (дополнение до 2) двоичного числа получается добавлением 1 к младшему значащему разряду его дополнения до 1. [1]

Дополнение до 2 двоичного числа определяется как величина полученная вычитанием числа из наибольшей степени двух (из 2 N для N-битного дополнения до 2). [2]

Содержание

Представление числа в дополнительном коде

При записи числа в дополнительном коде старший разряд является знаковым. Если его значение равно 0, то в остальных разрядах записано положительное двоичное число, совпадающее с прямым кодом. Если же знаковый разряд равен 1, то в остальных разрядах записано отрицательное двоичное число, преобразованное в дополнительный код. Для получения значения, которое противоположно по знаку, все разряды, включая знаковый, инвертируются, а затем к результату добавляется единица.

Десятичное
представление
Код двоичного представления (8 бит)
прямойдополнительный
1270111111101111111
10000000100000001
00000000000000000
-010000000———
-11000000111111111
-21000001011111110
-31000001111111101
-41000010011111100
-51000010111111011
-61000011011111010
-71000011111111001
-81000100011111000
-91000100111110111
-101000101011110110
-111000101111110101
-1271111111110000001
-128———10000000

При применении той же идеи к привычной 10-ричной системе счисления получится (например, для гипотетического процессора использующего 10-ричную систему счисления):

10-ричная система счисления
(«обычная» запись)
10-ричная система счисления,
дополнительный код
..
130013
120012
110011
100010
90009
80008
..
20002
10001
00000
-19999
-29998
-39997
-49996
..
-99991
-109990
-119989
-129988
..

Преобразование дополнительного кода

Преобразование числа из прямого кода в дополнительный осуществляется по следующему алгоритму.

Пример. Преобразуем отрицательное число −5, записанное в прямом коде, в дополнительный. Прямой код числа −5, взятого по модулю:

Инвертируем все разряды числа, получая таким образом обратный код:

Добавим к результату 1

Допишем слева знаковый единичный разряд

Для обратного преобразования используется тот же алгоритм. А именно:

Инвертируем все разряды числа, получая таким образом обратный код:

Добавим к результату 1 и проверим, сложив с дополнительным кодом

Дополнительный код для десятичных чисел

Тот же принцип можно использовать и в компьютерном представлении десятичных чисел: для каждого разряда цифра X заменяется на 9−X, и к получившемуся числу добавляется 1. Например, при использовании четырёхзначных чисел −0081 заменяется на 9919 (9919+0081=0000, пятый разряд выбрасывается).

Источник

Прямой, дополнительный и обратный коды

Прямой, дополнительный и обратный код числа (создан по запросу).

Далее идет калькулятор, который переводит введенное положительное или отрицательное целое число в двоичный код, а также выводит обратный код этого числа и его дополнительный код. Под калькулятором, как водится, немного теории.

Обновление: Из комментариев становится ясно, что люди не вполне понимают, что делает этот калькулятор. Точнее, что делал — применял алгоритм вычисления дополнительного кода к любому числу. Люди хотят, чтобы он им просто показывал дополнительный код числа. Ну хорошо — теперь при вводе положительного числа калькулятор показывает представление числа в двоичной форме, ибо для него нет обратного и дополнительного кода, а при вводе отрицательного показывает дополнительный и обратный код.

дополнительный код в десятичную систему. . дополнительный код в десятичную систему фото. дополнительный код в десятичную систему-. картинка дополнительный код в десятичную систему. картинка . Пример перевода x1=10101-пр=010101 x2=-11101-пр=111101 x3=0,101-пр=0,101 x4=-0,111-пр=1,111 2) Обратный код числа, используется для выполнения арифметических операций вычитания, умножения, деления, через сложение. Обратный код положительного числа совпадает с его прямым кодом, обратный код отрицательного числа формируется по правилам: в знаковом разряде записывается “1”; цифровые значения меняются на противоположные.

Прямой, дополнительный и обратный код

Прямой код числа это представление беззнакового двоичного числа. Если речь идет о машинной арифметике, то как правило на представление числа отводится определенное ограниченное число разрядов. Диапазон чисел, который можно представить числом разрядов n равен

Обратный код числа, или дополнение до единицы (one’s complement) это инвертирование прямого кода (поэтому его еще называют инверсный код). То есть все нули заменяются на единицы, а единицы на нули.

Дополнительный код числа, или дополнение до двойки (two’s complement) это обратный код, к младшему значащему разряду которого прибавлена единица

А теперь «зачем, зачем это все?» ©

Для различия положительных и отрицательных чисел выделяют старший разряд числа, который называется знаковым (sign bit)
0 в этом разряде говорит нам о том, что это положительное число, а 1 — отрицательное.

С положительными числами все вроде бы понятно, для их представления можно использовать прямой код
0 — 0000
1 — 0001
7 — 0111

А как представить отрицательные числа?

И это оказалось очень удобно для машинных вычислений — при таком представлении отрицательного числа операции сложения и вычитания можно реализовать одной схемой сложения, при этом очень легко определять переполнение результата (когда для представления получившегося числа не хватает разрядности)

Пара примеров
7-3=4
0111 прямой код 7
1101 дополнительный код 3
0100 результат сложения 4

-1+7=6
1111 дополнительный код 1
0111 прямой код 7
0110 результат сложения 6

Что касается переполнения — оно определяется по двум последним переносам, включая перенос за старший разряд. При этом если переносы 11 или 00, то переполнения не было, а если 01 или 10, то было. При этом, если переполнения не было, то выход за разряды можно игнорировать.

Примеры где показаны переносы и пятый разряд

00111 прямой код 7
00001 прямой код 1
01110 переносы
01000 результат 8 — переполнение

Два последних переноса 01 — переполнение

-7+7=0
00111 прямой код 7
01001 дополнительный код 7
11110 переносы
10000 результат 16 — но пятый разряд можно игнорировать, реальный результат 0

Два последних переноса 11 з перенос в пятый разряд можно отбросить, оставшийся результат, ноль, арифметически корректен.
Опять же проверять на переполнение можно простейшей операцией XOR двух бит переносов.

Вот благодаря таким удобным свойствам дополнительный код это самый распространенный способ представления отрицательных чисел в машинной арифметике.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *