двоичный код перевести в айпи

Двоичная IP-адресация

1 — это то же самое, что и 1 x10 0 = 1×1 = 1
10 — это то же самое, что и 0 x10 0 + 1 x10 1 = 0x1 + 1×10 = 10
100 — то же самое, что и 0 x10 0 + 0 x10 1 + 1 x10 2 = 0x1+0x10+1х100 = 100.
1000 — то же самое, что и 0 x10 0 + 0 x10 1 + 0 x10 2 + 1 x10 3 = 0x1 + 0x10 + 0x100 + 1×1000 = 1000.

Так как двоичная система основана на возведении в степень числа 2, каждая позиция в октете представляет различные степени от 2. Величина показателя степени 2 назначается каждому разряду двоичного числа, начиная с крайнего правого. Чтобы определить, чему равно двоичное число, необходимо сложить значения всех разрядов в октете.

Следовательно, для двоичного числа первого октета 11000000, справедливо следующее:

0x2 0 = 0x1 = 0
0x2 1 = 0x2 = 0
0x2 2 = 0x4 = 0
0x2 3 = 0x8 = 0
0x2 4 = 0x16 = 0
0x2 5 = 0x32 = 0
1×2 б = 1×64 = 64
1×2 7 = 1×128 = 128

Достаточно трудно запомнить число, состоящее из 8 цифр, не говоря уже о числах из 32 цифр, которые используются в IP-адресах. Поэтому для обозначения 32-битовых чисел в IP-адресах используются десятичные числа. Это называется представлением в десятичной форме с разделением точками.

Чтобы перевести IP-адрес

перевести в этот упрощенный формат, для начала его надо представить в виде 4 отдельных байтов (по 8 бит); другими словами, IP-адрес необходимо разделить на 4 октета:

Затем каждое из этих 8-битовых чисел преобразовывается в его десятичный эквивалент.

В результате двоичное число 11000000.00000101.00100010.00001011 преобразуется в точечно-десятичное число 192.5.34.11.

Источник

Как перевести IP адрес в двоичный код?

Как перевести IP адрес в двоичную систему счисления?

2 ответа Для перевода чисел из десятичной системы счисления в двоичную используют так называемый «алгоритм замещения», состоящий из следующей последовательности действий: Делим десятичное число А на 2. Частное Q запоминаем для следующего шага, а остаток a записываем как младший бит двоичного числа.

Как перевести IP адрес из двоичной системы в десятичную?

Из двоичной в десятичную систему счисления

Это связано с восемью битами каждого октета в ip адресе. Для преобразования двоичного числа надо будет каждую цифру помножить на число 2 (основание системы счисления) в степени позиции той цифры, а затем сложить те цифры.

Как определить к какому классу относится IP адрес?

Класс адреса можно определить по значению первого октета. Например, если значение первого октета IP-адреса находится в диапазоне от 192 до 223, то это адрес класса C. Например, адрес 200.14.193.67 относится к классу С.

Какие бывают классы IP адресов?

Классы IPv4 адресов

Как перевести в двоичную систему счисления?

Для перевода десятичного числа в двоичную систему его необходимо последовательно делить на 2 до тех пор, пока не останется остаток, меньший или равный 1. Число в двоичной системе записывается как последовательность последнего результата деления и остатков от деления в обратном порядке.

Как определить длину маски подсети?

Маску подсети можно определить как количество бит в адресе, представляющих номер сети (количество бит со значением «1»). Например, «8-битной маской» называют маску, в которой 8 бит – единичные, а остальные 24 бита – нулевые. Маски подсети записываются в формате десятичных чисел с точками, как и IP-адреса.

Какой айпи адрес?

IP-адрес компьютера (или айпи) — это уникальный номер компьютера в сети, который позволяет отличить ваш компьютер от всех остальных. Он состоит из четырех наборов цифр от 0 до 255.

Как узнать количество хостов в сети?

Количество хостов в подсети = 2n-2, где n – это количество свободных бит (нулей) в порции хоста, а «-2» — это вычет адреса сети (в порции хоста все нули) и широковещательного адреса (в порции хоста все единицы).

В чем отличие публичных и приватных IP адресов?

Приватный IP-адрес существует только в рамках локальной сети. Для компьютеров с приватным адресом невозможен обмен информацией или выход в Интернет без участия посредника – сервера или роутера. … Публичный IP-адрес (его также называют «белым») используется в сети Интернет.

Какие бывают классы сетей?

класспервые битымаска подсети
A255.0.0.0
B10255.255.0.0
C110255.255.255.0
D1110групповой адрес

Какой диапазон у чисел в десятичном интернет адресе?

Что означает 24 в IP адресе?

Данный вид записи заменяет собой указание диапазона IP-адресов. Число после косой черты означает количество единичных разрядов в маске подсети. … 24 разряда IP-адреса отводятся под номер сети, а остальные 32-24=8 разрядов полного адреса — под адреса хостов этой сети, адрес этой сети и широковещательный адрес этой сети.

Какое сетевое устройство может иметь два адреса IP?

У каждого хоста и маршрутизатора в Интеренете есть IP-адрес. IP-адрес не имеет отношения к хосту. Он имеет отношение к сетевому интерфейсу, поэтому иногда хост или маршрутизатор могут иметь несколько IP-адресов.

Сколько всего может быть IP адресов?

Количество IP-адресов для устройств в протоколе IPv4 в мире составляет порядка 4,3 млрд и уже практически исчерпано из-за длины IP-адреса в 32 бита, отметил Алексей Меркутов.

Источник

Перевод текста в цифровой код.

Давайте разберемся как же все таки переводить тексты в цифровой код? Кстати, на нашем сайте вы можете перевести любой текст в десятичный, шестнадцатеричный, двоичный код воспользовавшись Калькулятором кодов онлайн.

Кодирование текста.

По теории ЭВМ любой текст состоит из отдельных символов. К этим символам относятся: буквы, цифры, строчные знаки препинания, специальные символы ( «»,№, (), и т.д.), к ним, так же, относятся пробелы между словами.

Необходимый багаж знаний. Множество символов, при помощи которых записываю текст, называется АЛФАВИТОМ.

Число взятых в алфавите символов, представляет его мощность.

Количество информации можно определить по формуле : N = 2b

Алфавит, в котором будет 256 может вместить в себя практически все нужные символы. Такие алфавиты называют ДОСТАТОЧНЫМИ.

Если взять алфавит мощностью 256, и иметь в виду что 256 = 28

Если перевести каждый символ в двоичный код, то этот код компьютерного текста будет занимать 1 байт.

Как текстовая информация может выглядеть в памяти компьютера?

Любой текст набирают на клавиатуре, на клавишах клавиатуры, мы видим привычные для нас знаки (цифры, буквы и т.д.). В оперативную память компьютера они попадают только в виде двоичного кода. Двоичный код каждого символа, выглядит восьмизначным числом, например 00111111.

Поскольку, байт – это самая маленькая адресуемая частица памяти, и память обращена к каждому символу отдельно – удобство такого кодирование очевидно. Однако, 256 символов – это очень удобное количество для любой символьной информации.

Естественно, встал вопрос: Какой конкретно восьми разрядный код принадлежит каждому символу? И как осуществить перевод текста в цифровой код?

Этот процесс условный, и мы вправе придумать различные способы для кодировки символов. Каждый символ алфавита имеет свой номер от 0 до 255. И каждому номеру присвоен код от 00000000 до 11111111.

Таблица для кодировки – это «шпаргалка», в которой указаны символы алфавита в соответствии порядковому номеру. Для различных типов ЭВМ используют разные таблицы для кодировки.

ASCII(или Аски), стала международным стандартом для персональных компьютеров. Таблица имеет две части.

Таблица кода символов ASCII.

двоичный код перевести в айпи. 7851695770f05316d1e9.40690015. двоичный код перевести в айпи фото. двоичный код перевести в айпи-7851695770f05316d1e9.40690015. картинка двоичный код перевести в айпи. картинка 7851695770f05316d1e9.40690015. Двоичная IP-адресация

Первая половина для таблицы ASCII. (Именно первая половина, стала стандартом.)

двоичный код перевести в айпи. 0528925770f06facd5f8.69317696. двоичный код перевести в айпи фото. двоичный код перевести в айпи-0528925770f06facd5f8.69317696. картинка двоичный код перевести в айпи. картинка 0528925770f06facd5f8.69317696. Двоичная IP-адресация

Соблюдение лексикографического порядка, то есть, в таблице буквы (Строчные и прописные) указаны в строгом алфавитном порядке, а цифры по возрастанию, называют принципом последовального кодирования алфавита.

Для русского алфавита тоже соблюдают принцип последовательного кодирования.

Сейчас, в наше время используют целых пять систем кодировок русского алфавита(КОИ8-Р, Windows. MS-DOS, Macintosh и ISO). Из-за количества систем кодировок и отсутствия одного стандарта, очень часто возникают недоразумения с переносом русского текста в компьютерный его вид.

Одним из первых стандартов для кодирования русского алфавита на персональных компьютерах считают КОИ8(«Код обмена информацией, 8-битный»). Данная кодировка использовалась в середине семидесятых годов на серии компьютеров ЕС ЭВМ, а со средины восьмидесятых, её начинают использовать в первых переведенных на русский язык операционных системах UNIX.

С начала девяностых годов, так называемого, времени, когда господствовала операционная система MS DOS, появляется система кодирования CP866 («CP» означает «Code Page», «кодовая страница»).

Гигант компьютерных фирм APPLE, со своей инновационной системой, под упралением которой они и работали (Mac OS), начинают использовать собственную систему для кодирования алфавита МАС.

Международная организация стандартизации (International Standards Organization, ISO)назначает стандартом для русского языка еще одну систему для кодирования алфавита, которая называется ISO 8859-5.

А самая распространенная, в наши дни, система для кодирования алфавита, придумана в Microsoft Windows, и называется CP1251.

С второй половины девяностых годов, была решена проблема стандарта перевода текста в цифровой код для русского языка и не только, введением в стандарт системы, под названием Unicode. Она представлена шестнадцатиразрядной кодировкой, это означает, что на каждый символ отводится ровно по два байта оперативной памяти. Само собой, при такой кодировке, затраты памяти увеличены в два раза. Однако, такая кодовая система позволяет переводить в электронный код до 65536 символов.

Специфика стандартной системы Unicode, является включением в себя абсолютно любого алфавита, будь он существующим, вымершим, выдуманным. В конечном счете, абсолютно любой алфавит, в добавок к этом, система Unicode, включает в себя уйму математических, химических, музыкальных и общих символов.

Давайте с помощью таблицы ASCII посмотрим, как может выглядеть слово в памяти вашего компьютера.

двоичный код перевести в айпи. 6974545770f0cbbc4620.98381813. двоичный код перевести в айпи фото. двоичный код перевести в айпи-6974545770f0cbbc4620.98381813. картинка двоичный код перевести в айпи. картинка 6974545770f0cbbc4620.98381813. Двоичная IP-адресация

Очень часто случается так, что ваш текст, который написан буквами из русского алфавита, не читается, это обусловлено различием систем кодирования алфавита на компьютерах. Это очень распространенная проблема, которая довольно часто обнаруживается.

Источник

Двоичный код.

Кстати, на нашем сайте вы можете перевести любой текст в десятичный, шестнадцатеричный, двоичный код воспользовавшись Калькулятором кодов онлайн.

Видя что-то впервые, мы зачастую задаемся логичным вопросом о том, как это работает. Любая новая информация воспринимается нами, как что-то сложное или созданное исключительно для разглядываний издали, однако для людей, желающих узнать подробнее о двоичном коде, открывается незамысловатая истина – бинарный код вовсе не сложный для понимания, как нам кажется. К примеру, английская буква T в двоичной системе приобретет такой вид – 01010100, E – 01000101 и буква X – 01011000. Исходя из этого, понимаем, что английское слово TEXT в виде двоичного кода будет выглядеть таким вот образом: 01010100 01000101 01011000 01010100. Компьютер понимает именно такое изложение символов для данного слова, ну а мы предпочитаем видеть его в изложении букв алфавита.

На сегодняшний день двоичный код активно используется в программировании, поскольку работают вычислительные машины именно благодаря ему. Но программирование не свелось до бесконечного набора нулей и единиц. Поскольку это достаточно трудоемкий процесс, были приняты меры для упрощения понимания между компьютером и человеком. Решением проблемы послужило создание языков программирования (бейсик, си++ и т.п.). В итоге программист пишет программу на языке, который он понимает, а потом программа-компилятор переводит все в машинный код, запуская работу компьютера.

Перевод натурального числа десятичной системы счисления в двоичную систему.

Чтобы перевести числа из десятичной системы счисления в двоичную пользуются «алгоритмом замещения», состоящим из такой последовательности действий:

1. Выбираем нужное число и делим его на 2. Если результат деления получился с остатком, то число двоичного кода будет 1, если остатка нет – 0.

2. Откидывая остаток, если он есть, снова делим число, полученное в результате первого деления, на 2. Устанавливаем число двоичной системы в зависимости от наличия остатка.

3. Продолжаем делить, вычисляя число двоичной системы из остатка, до тех пор, пока не дойдем до числа, которое делить нельзя – 0.

4. В этот момент считается, что двоичный код готов.

Для примера переведем в двоичную систему число 7:

1. 7 : 2 = 3.5. Поскольку остаток есть, записываем первым числом двоичного кода 1.

2. 3 : 2 = 1.5. Повторяем процедуру с выбором числа кода между 1 и 0 в зависимости от остатка.

3. 1 : 2 = 0.5. Снова выбираем 1 по тому же принципу.

4. В результате получаем, переведенный из десятичной системы счисления в двоичную, код – 111.

Таким образом можно переводить бесконечное множество чисел. Теперь попробуем сделать наоборот – перевести число из двоичной в десятичную.

Перевод числа двоичной системы в десятичную.

Для этого нам нужно пронумеровать наше двоичное число 111 с конца, начиная нулем. Для 111 это 1^2 1^1 1^0. Исходя из этого, номер для числа послужит его степенем. Далее выполняем действия по формуле: (x * 2^y) + (x * 2^y) + (x * 2^y), где x – порядковое число двоичного кода, а y – степень этого числа. Подставляем наше двоичное число под эту формулу и считаем результат. Получаем: (1 * 2^2) + (1 * 2^1) + (1 * 2^0) = 4 + 2 + 1 = 7.

Немного из истории двоичной системы счисления.

Источник

двоичный код перевести в айпи. header. двоичный код перевести в айпи фото. двоичный код перевести в айпи-header. картинка двоичный код перевести в айпи. картинка header. Двоичная IP-адресация

Перевод ip адреса в двоичную систему

Теперь, когда мы знаем, что такое IP-адрес, маска подсети, идентификаторы сети и узла, полезно запомнить правила, которые следует применять при назначении этих параметров:

1. идентификатор сети не может содержать только двоичные нули или только единицы. Например, адрес 0.0.0.0 не может являться идентификатором сети;

2. идентификатор узла также не может содержать только двоичные нули или только единицы – такие адреса зарезервированы для специальных целей:

· все нули в идентификаторе узла означают, что этот адрес является адресом сети. Например, 192.168.5.0 является правильным адресом сети при использовании маски 255.255.255.0 и его нельзя использовать для адресации компьютеров,

· все единицы в идентификаторе узла означают, что этот адрес является адресом широковещания для данной сети. Например, 192.168.5.255 является адресом широковещания в сети 192.168.5.0 при использовании маски 255.255.255.0 и его нельзя использовать для адресации компьютеров;

3. идентификатор узла в пределах одной и той же подсети должен быть уникальным;

4. диапазон адресов от 127.0.0.1 до 127.255.255.254 нельзя использовать в качестве IP-адресов компьютеров. Вся сеть 127.0.0.0 по маске 255.0.0.0 зарезервирована под так называемый «адрес заглушки» (loopback), используемый в IP для обращения компьютера к самому себе.

Это легко проверить: достаточно на любом компьютере с установленным протоколом TCP/IP выполнить команду

и, если протокол TCP/IP работает, вы увидите, как ваш компьютер будет отвечать на собственные запросы.

Классовая и бесклассовая IP-адресация

Первоначальная система IP-адресации в Интернете выглядела следующим образом. Все пространство возможных IP-адресов (а это более четырех миллиардов, точнее 4 294 967 296 адресов) было разбито на пять классов, причем принадлежность IP-адреса к определенному классу определялась по нескольким битам первого октета (табл. 8.2).

Целое (тип данных)

Заметим, что для адресации сетей и узлов использовались только классы A, B и C. Кроме того, для этих сетей были определены фиксированные маски подсети по умолчанию, равные, соответственно, 255.0.0.0, 255.255.0.0 и 255.255.255.0, которые не только жестко определяли диапазон возможных IP-адресов узлов в таких сетях, но и механизм маршрутизации.

двоичный код перевести в айпи. 76363. двоичный код перевести в айпи фото. двоичный код перевести в айпи-76363. картинка двоичный код перевести в айпи. картинка 76363. Двоичная IP-адресация

Чтобы рассчитать максимально возможное количе-ство узлов в любой IP-сети, достаточно знать, сколько битов содержится в идентификаторе узла, или, иначе, сколько нулей имеется в маске подсети. Это число используется в качестве показателя степени двойки, а затем из результата вычитается два зарезервированных адреса (сети и широковещания). Аналогичным способом легко вычислить и возможное количество сетей классов A, B или C, если учесть, что первые биты в октете уже зарезервированы, а в классе A нельзя использовать IP-адреса 0.0.0.0 и 127.0.0.0 для адресации сети.

Для получения нужного диапазона IP-адресов организациям предлагалось заполнить регистрационную форму, в которой следовало указать текущее число компьютеров и планируемый рост компьютерного парка в течение двух лет.

Первоначально данная схема хорошо работала, поскольку количество сетей было небольшим. Однако с развитием Интернета такой подход к распределению IP-адресов стал вызывать проблемы, особенно острые для сетей класса B. Действительно, организациям, в которых число компьютеров не превышало нескольких сотен (скажем, 500), приходилось регистрировать для себя целую сеть класса B. Поэтому количество доступных сетей класса B стало на глазах «таять», но при этом громадные диапазоны IP-адресов (в нашем примере – более 65000) пропадали зря.

Чтобы решить проблему, была разработана бесклассовая схема IP-адресации (Classless InterDomain Routing, CIDR), в которой не только отсутствует привязка IP-адреса к классу сети и маске подсети по умолчанию, но и допускается применение так называемых масок подсети с переменной длиной (Variable Length Subnet Mask, VLSM). Например, если при выделении сети для вышеуказанной организации с 500 компьютерами вместо фиксированной маски 255.255.0.0 использовать маску 255.255.254.0,то получившегося диапазона из 512 возможных IP-адресов будет вполне достаточно.

Оставшиеся 65 тысяч адресов можно зарезервировать на будущее или раздать другим желающим подключиться к Интернету.

Этот подход позволил гораздо более эффективно выделять организациям нужные им диапазоны IP-адресов, и проблема с нехваткой IP-сетей и адресов стала менее острой.

Дата добавления: 2014-11-25; Просмотров: 1686; Нарушение авторских прав?;

Системы счисления, преобразование систем счисления, примеры перевода систем счисления

В мире существует много разных систем счисления: десятичная, двоичная, восьмеричная, двенадцатеричная, двадцатеричная, шестнадцатеричная, шестидесятеричная и др.

Каждую систему счисления мы разбирать не будем, так как нам это не пригодится, гораздо важнее разобраться в двух системах счисления для решения любых сетевых задач: десятичной и двоичной, я называю их «системами счисления в IP».

Для успешной сдачи тестов, экзаменов, контрольных и прочих работ, вам также потребуется знать о восьмеричной и шестнадцатеричной системе счисления. С ними гораздо легче будет разобраться, если вы овладеете двоичной системой счисления.

Итак, разбираемся в первых двух.

Системы счисления в ip

При делении сетей на подсети мы часто будет переводить ip адрес и маску из десятичной системы счисления в двоичную, и обратно. Именно поэтому я их назвал системами счисления ip.

Давайте скорее познакомимся с ними, научимся преобразовывать между собой и посмотрим много простых и понятных примеров.

Десятичная система счисления

Десятичная система счисления известна всем нам очень подробно, мы ею пользуемся каждый день (при оплате за транспорт, подсчёте количества штук чего либо, арифметические операции над числами). В десятичную систему счисления входят 10 цифр: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9.

Десятичная система счисления является позиционной системой, потому что зависит от того, в каком месте числа (в каком разряде, на какой позиции) стоит цифра. Т.е. 001 – единица, 010 – это уже десять, 100 – а это сто. Мы видим, что менялась только позиция одной цифры (единицы), а число менялось очень значительно.

В любой позиционной системе счисления позиция цифры представляет собой цифру, помноженную на число основания системы счисления в степени позиции этой цифры. Посмотрите на пример, и станет всё ясно.

Число десятичное 123 = (1 * 10^2) + (2 * 10^1) + (3 * 10^0) = (1*100) + (2*10) + (3*1)

Число десятичное 209 = (2 * 10^2) + (0 * 10^1) + (9 * 10^0) = (2*100) + (0*10) + (9*1)

Двоичная система счисления

Двоичная система счисления нам может быть и вовсе не знакома, но поверьте, она намного проще, чем привычная нам десятичная система. В двоичную систему счисления входят всего 2 цифры: 0 и 1. Это сравнимо с лампочкой, когда она не горит – это 0, а когда свет включен – это 1.

Двоичная система счисления, как и десятичная, является позиционной.

Число двоичное 1111 = (1*2^3) + (1*2^2) + (1*2^1) + (1*2^0) = (1*8) + (1*4) + (1*2) + (1*1) = 8 + 4 + 2 + 1 = 15 (десятичное).

Число двоичное 0000 = (0*2^3) + (0*2^2) + (0*2^1) + (0*2^0) = (0*8) + (0*4) + (0*2) + (0*1) = 8 + 4 + 2 + 1 = 0 (десятичное).

Хотели мы того, или нет, но мы уже преобразовали 2 двоичных числа в десятичные. Рассмотрим более подробно дальше.

Из двоичной в десятичную систему счисления

Из двоичной системы счисления в десятичную систему счисления переводить не сложно, надо выучить степени двойки от 0 до 15, хотя в большинстве случаев будет достаточным от 0 до 7. Это связано с восемью битами каждого октета в ip адресе.

Для преобразования двоичного числа надо будет каждую цифру помножить на число 2 (основание системы счисления) в степени позиции той цифры, а затем сложить те цифры. В примерах ниже всё будет ясно.

Начнем с простых чисел и закончим числами из восьми цифр.

Число двоичное 111 = (1*2^2) + (1*2^1) + (1*2^0) = (1*4) + (1*2) + (1*1) = 4 + 2 + 1 = 7 (десятичное).

Число двоичное 001 = (0*2^2) + (0*2^1) + (1*2^0) = (0*4) + (0*2) + (1*1) = 0 + 0 + 1 = 1 (десятичное).

Число двоичное 100 = (1*2^2) + (0*2^1) + (0*2^0) = (1*4) + (0*2) + (0*1) = 4 + 0 + 0 = 4 (десятичное).

Число двоичное 101 = (1*2^2) + (0*2^1) + (1*2^0) = (1*4) + (0*2) + (1*1) = 4 + 0 + 1 = 5 (десятичное).

Точно таким же образом можно преобразовать любое двоичное число в десятичное.

Число двоичное 1010 = (1*2^3) + (0*2^2) + (1*2^1) + (0*2^0) = (1*8) + (0*4) + (1*2) + (0*1) = 8 + 0 + 2 + 0 = 10 (десятичное).

Число двоичное 10000001 = (1*2^7) + (0*2^6) + (0*2^5) + (0*2^4) + (0*2^3) + (0*2^2) + (0*2^1) + (1*2^0) = (1*128) + (0*64) + (0*32) + (0*16) + (0*8) + (0*4) + (0*2) + (1*1) = 128 + 0 + 0 + 0 + 0 + 0 + 0 + 1 = 129 (десятичное).

А так же когда вам надоест считать действия с нулями, то пропускайте их. Ваши подсчёты станут краткими и красивыми.

Число двоичное 10000001 = (1*2^7) + (1*2^0) = (1*128) + (1*1) = 128 + 1 = 129 (десятичное).

Число двоичное 10000011 = (1*2^7) + (1*2^1) + (1*2^0) = (1*128) + (1*2) + (1*1) = 128 + 2 + 1 = 131 (десятичное).

Число двоичное 01111111 = (1*2^6) + (1*2^5) + (1*2^4) + (1*2^3) + (1*2^2) + (1*2^1) + (1*2^0) = (1*64) + (1*32) + (1*16) + (1*8) + (1*4) + (1*2) + (1*1) = 64 + 32 + 16 + 8 + 4 + 2 + 1 = 127 (десятичное).

Число двоичное 11111111 = (1*2^7) + (1*2^6) + (1*2^5) + (1*2^4) + (1*2^3) + (1*2^2) + (1*2^1) + (1*2^0) = (1*128) + (1*64) + (1*32) + (1*16) + (1*8) + (1*4) + (1*2) + (1*1) = 128 + 64 + 32 + 16 + 8 + 4 + 2 + 1 = 255 (десятичное).

Число двоичное 01111011 = (1*2^6) + (1*2^5) + (1*2^4) + (1*2^3) + (1*2^1) + (1*2^0) = (1*64) + (1*32) + (1*16) + (1*8) + (1*2) + (1*1) = 64 + 32 + 16 + 8 + 2 + 1 = 123 (десятичное).

Число двоичное 11010001 = (1*2^7) + (1*2^6) + (1*2^4) + (1*2^0) = (1*128) + (1*64) + (1*16) + (1*1) = 128 + 64 + 16 + 1 = 209 (десятичное).

Вот и справились. Теперь переведём всё обратно из двоичной в десятичную.

Из десятичной в двоичную систему счисления

Перевод из десятичной системы счисления в двоичную систему тоже не труден, только вместо сложения потребуется вычитание.

Последовательность перевода в десятичную систему счисления следующая: надо вычесть из переводимого числа ближайшее (меньшее или равное) число к нему из степеней двойки. Затем проделать тоже самое с получившимся значением, и так до нуля. В зависимости от используемой степени двойки записать цифру 1 в нужном разряде двоичного числа, пропуски заполнить единицами.

Смотрите примеры, и вопросы отпадут сами собой.

Чтобы не сбивать вас, уберём слова:

Число десятичное 10: 10-8=2; 2-2=0. Двоичное число – 00001010.

Число десятичное 129: 129-128=1; 1-1=0. Двоичное число – 10000001.

Число десятичное 131: 131-128=3; 3-2=1; 1-1=0. Двоичное число – 10000011.

Число десятичное 127: 127-64=63; 63-32=31; 31-16=15; 15-8=7; 7-4=3; 3-2=1; 1-1=0. Двоичное число – 01111111.

Число десятичное 255: 255-128=127; 127-64=63; 63-32=31; 31-16=15; 15-8=7; 7-4=3; 3-2=1; 1-1=0. Двоичное число – 11111111.

Число десятичное 123: 123-64=59; 59-32=27; 27-16=11; 11-8=3; 3-2=1; 1-1=0. Двоичное число – 01111011.

Число десятичное 209: 209-128=81; 81-64=17; 17-16=1; 1-1=0. Двоичное число – 11010001.

Заключение

Как вы видите, переводить из двоичной системы счисления в десятичную систему счисления не очень сложно. Это преобразование мы будет часто использовать при делении сетей на подсети.

Попробуйте сами преобразовать ваши число и год рождения. Для проверки можете использовать виндовс-калькулятор в инженерном режиме или режиме Программист.

Двоичное преобразование адресов TCP/IP | Энциклопедия Windows

В двоичной системе исчисления используется только две цифры: 0 и 1. Так как это система исчисления с основанием, равным 2, то каждая позиция в двоичной последовательности представляет степень двойки. Если связать это со стандартной десятичной системой исчисления, которая используется каждый день, то можно понять, что все не так плохо.

Возьмем число 201. При рассмотрении этого трехзначного числа можно заметить, что в нем присутствует разряд единиц, разряд десятков и разряд сотен. Поэтому число 201 равно 1х1+0х10+2х100. Цифра в каждом разряде умножается на степень 10 с показателем, соответствующим положению разряда. Так как двоичная система исчисления имеет основание 2, цифра каждого разряда умножается на степень двойки, соответствующую положению разряда.

Для преобразования десятичных чисел в двоичное представление, можно просто начать с единицы и продолжить удвоение числа, пока не будет достигнуто значение 128. После этого необходимо использовать последовательность нумерации из приведенной таблицы преобразования.

Теперь посмотрим, как адрес IP 10.8.32.6 преобразовывается в двоичную форму.

Использование простой таблицы для преобразования двоичных чисел

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *