ген генетический код биосинтез белка

Что такое биосинтез белка в клетке

В статье мы дадим опре­де­ле­ние био­син­те­зу и рас­смот­рим ос­нов­ные этапы син­те­за белков. Разберёмся, чем трансляция отличается от транскрипции.

ген генетический код биосинтез белка. 5ae47db9e8c2bb9e584b8208 wall clock. ген генетический код биосинтез белка фото. ген генетический код биосинтез белка-5ae47db9e8c2bb9e584b8208 wall clock. картинка ген генетический код биосинтез белка. картинка 5ae47db9e8c2bb9e584b8208 wall clock. В статье мы дадим опре­де­ле­ние био­син­те­зу и рас­смот­рим ос­нов­ные этапы син­те­за белков. Разберёмся, чем трансляция отличается от транскрипции.

В клетках непрерывно идут процессы обмена веществ — процессы синтеза и распада веществ. Каж­дая клет­ка син­те­зи­ру­ет необ­хо­ди­мые ей ве­ще­ства. Этот про­цесс на­зы­ва­ет­ся био­син­те­зом.

Био­син­тез — это про­цесс со­зда­ния слож­ных ор­га­ни­че­ских ве­ществ в ходе био­хи­ми­че­ских ре­ак­ций, про­те­ка­ю­щих с по­мо­щью фер­мен­тов. Биосинтез необходим для выживания — без него клетка умрёт.

Одним из важнейших процессов биосинтеза в клетке является процесс биосинтеза белков, который включает в себя особые реакции, встречающиеся только в живой клетке — это реакции матричного синтеза. Матричный синтез — это синтез новых молекул в соответствии с планом, заложенным в других уже существующих молекулах.

ген генетический код биосинтез белка. 60b7631e33792aeb8f8f2962 podtyani shkolnyi predmet. ген генетический код биосинтез белка фото. ген генетический код биосинтез белка-60b7631e33792aeb8f8f2962 podtyani shkolnyi predmet. картинка ген генетический код биосинтез белка. картинка 60b7631e33792aeb8f8f2962 podtyani shkolnyi predmet. В статье мы дадим опре­де­ле­ние био­син­те­зу и рас­смот­рим ос­нов­ные этапы син­те­за белков. Разберёмся, чем трансляция отличается от транскрипции.

Синтез белка в клетке протекает при участии специальных органелл — рибосом. Это немембранные органеллы, состоящие из рРНК и рибосомальных белков.

Последовательность аминокислот в каждом белке определяется последовательностью нуклеотидов в гене — участке ДНК, кодирующем именно этот белок. Соответствие между последовательностью аминокислот в белке и последовательностью нуклеотидов в кодирующих его ДНК и иРНК определяется универсальным правилом — генетическим кодом.

Информация о белке может быть записана в нуклеиновой кислоте только одним способом — в виде последовательности нуклеотидов. ДНК построена из 4 видов нуклеотидов: аденина (А), тимина (Т), гуанина (Г), цитозина (Ц), а белки — из 20 видов аминокислот. Таким образом, возникает проблема перевода четырёхбуквенной записи информации в ДНК в двадцатибуквенную запись белков. Генетический код — соотношения нуклеотидных последовательностей и аминокислот, на основе которых осуществляется такой перевод.

Процесс синтеза белка в клетке можно разделить на два этапа: транскрипция и трансляция.

ген генетический код биосинтез белка. 603e02128cf08c4d07cb29a6 rQhQONFRstQ%20(1). ген генетический код биосинтез белка фото. ген генетический код биосинтез белка-603e02128cf08c4d07cb29a6 rQhQONFRstQ%20(1). картинка ген генетический код биосинтез белка. картинка 603e02128cf08c4d07cb29a6 rQhQONFRstQ%20(1). В статье мы дадим опре­де­ле­ние био­син­те­зу и рас­смот­рим ос­нов­ные этапы син­те­за белков. Разберёмся, чем трансляция отличается от транскрипции.

Транскрипция — первый этап биосинтеза белка

Транскрипция — это процесс синтеза молекулы иРНК на участке молекулы ДНК.

Транскрипция (с лат. transcription — переписывание) происходит в ядре клетки с участием ферментов, основную работу из которых осуществляет транскриптаза. В этом процессе матрицей является молекула ДНК.

ген генетический код биосинтез белка. 603e02a16babcd501ae6972b JA6X5GKkJq5PVoeEy7. ген генетический код биосинтез белка фото. ген генетический код биосинтез белка-603e02a16babcd501ae6972b JA6X5GKkJq5PVoeEy7. картинка ген генетический код биосинтез белка. картинка 603e02a16babcd501ae6972b JA6X5GKkJq5PVoeEy7. В статье мы дадим опре­де­ле­ние био­син­те­зу и рас­смот­рим ос­нов­ные этапы син­те­за белков. Разберёмся, чем трансляция отличается от транскрипции.

Спе­ци­аль­ный фер­мент на­хо­дит ген и рас­кру­чи­ва­ет уча­сток двой­ной спи­ра­ли ДНК. Фер­мент пе­ре­ме­ща­ет­ся вдоль цепи ДНК и стро­ит цепь ин­фор­ма­ци­он­ной РНК в со­от­вет­ствии с прин­ци­пом ком­пле­мен­тар­но­сти. По мере дви­же­ния фер­мен­та рас­ту­щая цепь РНК мат­ри­цы от­хо­дит от мо­ле­ку­лы, а двой­ная цепь ДНК вос­ста­нав­ли­ва­ет­ся. Когда фер­мент до­сти­га­ет конца ко­пи­ро­ва­ния участ­ка, то есть до­хо­дит до участ­ка, на­зы­ва­е­мо­го стоп-ко­до­ном, мо­ле­ку­ла РНК от­де­ля­ет­ся от мат­ри­цы, то есть от мо­ле­ку­лы ДНК. Таким об­ра­зом, тран­скрип­ция — это пер­вый этап био­син­те­за белка. На этом этапе про­ис­хо­дит счи­ты­ва­ние ин­фор­ма­ции путём син­те­за ин­фор­ма­ци­он­ной РНК.

Копировать информацию, хотя она уже содержится в молекуле ДНК, необходимо по следующим причинам: синтез белка происходит в цитоплазме, а молекула ДНК слишком большая и не может пройти через ядерные поры в цитоплазму. А маленькая копия её участка — иРНК — может транспортироваться в цитоплазму.

После транскрипции громоздкая молекула ДНК остаётся в ядре, а молекула иРНК подвергается «созреванию» — происходит процессинг иРНК. На её 5’ конец подвешивается КЭП для защиты этого конца иРНК от РНКаз — ферментов, разрушающих молекулы РНК. На 3’ конце достраивается поли(А)-хвост, который также служит для защиты молекулы. После этого проходит сплайсинг — вырезание интронов (некодирующих участков) и сшивание экзонов (информационных участков). После процессинга подготовленная молекула транспортируется из ядра в цитоплазму через ядерные поры.

Транскрипция пошагово:

Проверьте себя: помните ли вы принцип комплементарности? Молекула ДНК состоит из двух спирально закрученных цепей. Цепи в молекуле ДНК противоположно направлены. Остов цепей ДНК образован сахарофосфатными остатками, а азотистые основания одной цепи располагаются в строго определённом порядке напротив азотистых оснований другой — это и есть правило комплементарности.

Трансляция — второй этап биосинтеза белка

Трансляция — это перевод информации с языка нуклеотидов на язык аминокислот.

Что же происходит в клетке? Трансляция представляет собой непосредственно процесс построения белковой молекулы из аминокислот. Трансляция происходит в цитоплазме клетки. В трансляции участвуют рибосомы, ферменты и три вида РНК: иРНК, тРНК и рРНК. Глав­ным по­став­щи­ком энер­гии при трансляции слу­жит мо­ле­ку­ла АТФ — аде­но­з­ин­три­фос­фор­ная кис­ло­та.

ген генетический код биосинтез белка. 603e034ca3e48980e1ba966b s10JMAsBND9u7Y9 Ljv. ген генетический код биосинтез белка фото. ген генетический код биосинтез белка-603e034ca3e48980e1ba966b s10JMAsBND9u7Y9 Ljv. картинка ген генетический код биосинтез белка. картинка 603e034ca3e48980e1ba966b s10JMAsBND9u7Y9 Ljv. В статье мы дадим опре­де­ле­ние био­син­те­зу и рас­смот­рим ос­нов­ные этапы син­те­за белков. Разберёмся, чем трансляция отличается от транскрипции.

Во время транс­ля­ции нук­лео­тид­ные по­сле­до­ва­тель­но­сти ин­фор­ма­ци­он­ной РНК пе­ре­во­дят­ся в по­сле­до­ва­тель­ность ами­но­кис­лот в мо­ле­ку­ле по­ли­пеп­тид­ной цепи. Этот про­цесс идёт в ци­то­плаз­ме на ри­бо­со­мах. Об­ра­зо­вав­ши­е­ся ин­фор­ма­ци­он­ные РНК вы­хо­дят из ядра через поры и от­прав­ля­ют­ся к ри­бо­со­мам. Ри­бо­со­мы — уни­каль­ный сбо­роч­ный ап­па­рат. Ри­бо­со­ма сколь­зит по иРНК и вы­стра­и­ва­ет из опре­де­лён­ных ами­но­кис­лот длин­ную по­ли­мер­ную цепь белка. Ами­но­кис­ло­ты до­став­ля­ют­ся к ри­бо­со­мам с по­мо­щью транс­порт­ных РНК. Для каж­дой ами­но­кис­ло­ты тре­бу­ет­ся своя транс­порт­ная РНК, ко­то­рая имеет форму три­лист­ни­ка. У неё есть уча­сток, к ко­то­рому при­со­еди­ня­ет­ся ами­но­кис­ло­та и дру­гой три­плет­ный ан­ти­ко­дон, ко­то­рый свя­зы­ва­ет­ся с ком­пле­мен­тар­ным ко­до­ном в мо­ле­ку­ле иРНК.

Це­поч­ка ин­фор­ма­ци­он­ной РНК обес­пе­чи­ва­ет опре­де­лён­ную по­сле­до­ва­тель­ность ами­но­кис­лот в це­поч­ке мо­ле­ку­лы белка. Время жизни ин­фор­ма­ци­он­ной РНК ко­леб­лет­ся от двух минут (как у неко­то­рых бак­те­рий) до несколь­ких дней (как, на­при­мер, у выс­ших мле­ко­пи­та­ю­щих). Затем ин­фор­ма­ци­он­ная РНК раз­ру­ша­ет­ся под дей­стви­ем фер­мен­тов, а нук­лео­ти­ды ис­поль­зу­ют­ся для син­те­за новой мо­ле­ку­лы ин­фор­ма­ци­он­ной РНК. Таким об­ра­зом, клет­ка кон­тро­ли­ру­ет ко­ли­че­ство син­те­зи­ру­е­мых бел­ков и их тип.

Трансляция пошагово:

По промокоду BIO92021 вы получите бесплатный доступ к курсу биологии 9 класса. Выберите нужный раздел и изучайте биологию вместе с домашней онлайн-школой «Фоксфорда»!

Резюме

Теперь вы знаете, что биосинтез необходим для выживания — без него клетка умрёт. Процесс биосинтеза белков включает в себя особые реакции, встречающиеся только в живой клетке, — это реакции матричного синтеза.

Син­тез белка со­сто­ит из двух эта­пов: тран­скрип­ции (об­ра­зо­ва­ние ин­фор­ма­ци­он­ной РНК по мат­ри­це ДНК, про­те­ка­ет в ядре клет­ки) и транс­ля­ции (эта ста­дия про­хо­дит в ци­то­плаз­ме клет­ки на ри­бо­со­мах). Эти этапы сменяют друг друга и состоят из последовательных процессов.

Источник

2.6. Биосинтез белка и нуклеиновых кислот. Гены, генетический код

В обмене веществ организма ведущая роль принадлежит белкам и нуклеиновым кислотам.

Белковые вещества составляют основу всех жизненно важных структур клетки, обладают необычайно высокой реакционной способностью, наделены каталитическими функциями.

Нуклеиновые кислоты входят в состав важнейшего органа клетки — ядра, а также цитоплазмы, рибосом, митохондрий и т. д. Нуклеиновые кислоты играют важную, первостепенную роль в наследственности, изменчивости организма, в синтезе белка.

План синтеза белка хранится в ядре клетки, а непосредственно синтез происходит вне ядра, поэтому необходима помощь для доставки закодированного плана из ядра к месту синтеза. Такую помощь оказывают молекулы РНК.

Процесс начинается в ядре клетки: раскручивается и открывается часть «лестницы» ДНК. Благодаря этому буквы РНК образуют связи с открытыми буквами ДНК одной из нитей ДНК. Фермент переносит буквы РНК, чтобы соединить их в нить. Так буквы ДНК «переписываются» в буквы РНК. Новообразованная цепочка РНК отделяется, и «лестница» ДНК снова закручивается.

После дальнейших изменений этот вид закодированной РНК готов.

РНК выходит из ядра и направляется к месту синтеза белка, где буквы РНК расшифровываются. Каждый набор из трех букв РНК образует «слово», обозначающее одну конкретную аминокислоту.

Другой вид РНК отыскивает эту аминокислоту, захватывает ее с помощью фермента и доставляет к месту синтеза белка. По мере прочтения и перевода сообщения РНК цепочка аминокислот растет. Эта цепочка закручивается и укладывается в уникальную форму, создавая один вид белка.
Примечателен даже процесс укладки белка: на то, чтобы с помощью компьютера просчитать все возможности укладки белка среднего размера, состоящего из 100 аминокислот, потребовалось бы 10 27 лет. А для образования в организме цепочки из 20 аминокислот требуется не более одной секунды — и этот процесс происходит непрерывно во всех клетках тела.

Гены, генетический код и его свойства.

На Земле живет около 7 млрд людей. Если не считать 25—30 млн пар однояйцовых близнецов, то генетически все люди разные: каждый уникален, обладает неповторимыми наследственными особенностями, свойствами характера, способностями, темпераментом.

Такие различия объясняются различиями в генотипах—наборах генов организма; у каждого он уникален. Генетические признаки конкретного организма воплощаются в белках — следовательно, и строение белка одного человека отличается, хотя и совсем немного, от белка другого человека.

Это не означает, что у людей не встречается совершенно одинаковых белков. Белки, выполняющие одни и те же функции, могут быть одинаковыми или совсем незначительно отличаться одной-двумя аминокислотами друг от друга. Но не существует на Земле людей (за исключением однояйцовых близнецов), у которых все белки были бы одинаковы.

Информация о первичной структуре белка закодирована в виде последовательности нуклеотидов в участке молекулы ДНК – гене – единице наследственной информации организма. Каждая молекула ДНК содержит множество генов. Совокупность всех генов организма составляет его генотип.

Кодирование наследственной информации происходит с помощью генетического кода, который универсален для всех организмов и отличается лишь чередованием нуклеотидов, образующих гены, и кодирующих белки конкретных организмов.

Генетический код состоит из троек (триплетов) нуклеотидов ДНК, комбинирующихся в разной последовательности (ААТ, ГЦА, АЦГ, ТГЦ и т.д.), каждый из которых кодирует определенную аминокислоту (которая будет встроена в полипептидную цепь).

Аминокислот 20, а возможностей для комбинаций четырех нуклеотидов в группы по три – 64 четырех нуклеотидов вполне достаточно, чтобы кодировать 20 аминокислот

поэтому одна аминокислота может кодироваться несколькими триплетами.

Часть триплетов вовсе не кодирует аминокислоты, а запускает или останавливает биосинтез белка.

Собственно кодом считается последовательность нуклеотидов в молекуле и-РНК, т.к. она снимает информацию с ДНК (процесс транскрипции) и переводит ее в последовательность аминокислот в молекулах синтезируемых белков (процесс трансляции).

В состав и-РНК входят нуклеотиды АЦГУ, триплеты которых называются кодонами: триплет на ДНК ЦГТ на и-РНК станет триплетом ГЦА, а триплет ДНК ААГ станет триплетом УУЦ.

Именно кодонами и-РНК отражается генетический код в записи.

Таким образом, генетический код — единая система записи наследственной ин­формации в молекулах нуклеиновых кислот в виде последова­тельности нуклеотидов. Генетический код основан на использо­вании алфавита, состоящего всего из четырех букв-нуклеотидов, отличающихся азотистыми основаниями: А, Т, Г, Ц.

Основные свойства генетического кода:

1. Генетический код триплетен. Триплет (кодон) — последовательность трех нуклеотидов, кодирующая одну аминокислоту. Поскольку в состав бел­ков входит 20 аминокислот, то очевидно, что каждая из них не может кодироваться одним нуклеотидом (поскольку в ДНК всего четыре типа нуклеотидов, то в этом случае 16 аминокислот оста­ются незакодированными). Двух нуклеотидов для кодирования аминокислот также не хватает, поскольку в этом случае могут быть закодированы только 16 аминокислот. Значит, наименьшее число нуклеотидов, кодирующих одну аминокислоту, оказыва­ется равным трем. (В этом случае число возможных триплетов нуклеотидов составляет 4 3 = 64).

2. Избыточность (вырожденность) кода является следствием его триплетности и означает то, что одна аминокислота может кодироваться несколькими трип­летами (поскольку аминокислот 20, а триплетов — 64), за исключением метионина и триптофана, которые кодируются только одним триплетом. Кроме того, некоторые триплеты вы­полняют специфические функции: в молекуле иРНК триплеты УАА, УАГ, УГА — являются терминирующими кодонами, т. е. стоп-сигналами, прекращающими синтез полипептидной цепи. Триплет, соответствующий метионину (АУГ), стоящий в начале цепи ДНК, не кодирует аминокислоту, а выполняет функцию инициирования (возбуждения) считывания.

3. Одно­временно с избыточностью коду присуще свойство однозначнос­ти: каждому кодону соответствует только одна определенная аминокислота.

4. Код коллинеарен, т.е. по­следовательность нуклеотидов в гене точно соответствует после­довательности аминокислот в белке.

5. Генетический код непере­крываем и компактен, т. е. не содержит «знаков препинания». Это значит, что процесс считывания не допускает возможности перекрывания колонов (триплетов), и, начавшись на определенном кодоне, считывание идет непрерывно триплет за триплетом вплоть до стоп-сигналов ( терминирующих кодонов ).

6. Генетический код универсален, т. е. ядер­ные гены всех организмов одинаковым образом кодируют инфор­мацию о белках вне зависимости от уровня организации и систематического положения этих организмов.

Существуют таблицы генетического кода для расшифровки кодонов и-РНК и построения цепочек белковых молекул.

ген генетический код биосинтез белка. 1. ген генетический код биосинтез белка фото. ген генетический код биосинтез белка-1. картинка ген генетический код биосинтез белка. картинка 1. В статье мы дадим опре­де­ле­ние био­син­те­зу и рас­смот­рим ос­нов­ные этапы син­те­за белков. Разберёмся, чем трансляция отличается от транскрипции.

ген генетический код биосинтез белка. 2. ген генетический код биосинтез белка фото. ген генетический код биосинтез белка-2. картинка ген генетический код биосинтез белка. картинка 2. В статье мы дадим опре­де­ле­ние био­син­те­зу и рас­смот­рим ос­нов­ные этапы син­те­за белков. Разберёмся, чем трансляция отличается от транскрипции.

Реакции матричного синтеза.

В живых системах встречается реакции, неизвестные в неживой природе — реакции матричного синтеза.

Термином «матрица» в технике обозначают форму, употребляемую для отливки монет, медалей, типографского шрифта: затвердевший металл в точности воспроизводит все детали формы, служившей для отливки. Матричный синтез напоминает отливку на матрице: новые молекулы синтезируются в точном соответствии с планом, заложенным в структуре уже существующих молекул.

Матричный принцип лежит в основе важнейших синтетических реакций клетки, таких, как синтез нуклеиновых кислот и белков. В этих реакциях обеспечивается точная, строго специфичная последовательность мономерных звеньев в синтезируемых полимерах.

Здесь происходит направленное стягивание мономеров в определенное место клетки — на молекулы, служащие матрицей, где реакция протекает. Если бы такие реакции происходили в результате случайного столкновения молекул, они протекали бы бесконечно медленно. Синтез сложных молекул на основе матричного принципа осуществляется быстро и точно.

Роль матрицы в матричных реакциях играют макромолекулы нуклеиновых кислот ДНК или РНК.

Мономерные молекулы, из которых синтезируется полимер, — нуклеотиды или аминокислоты — в соответствии с принципом комплементарности располагаются и фиксируются на матрице в строго определенном, заданном порядке.

Затем происходит «сшивание» мономерных звеньев в полимерную цепь, и готовый полимер сбрасывается с матрицы.

После этого матрица готова к сборке новой полимерной молекулы. Понятно, что как на данной форме может производиться отливка только какой-то одной монеты, одной буквы, так и на данной матричной молекуле может идти «сборка» только какого-то одного полимера.

Матричный тип реакций — специфическая особенность химизма живых систем. Они являются основой фундаментального свойства всего живого — его способности к воспроизведению себе подобного.

К реакциям матричного синтеза относят:

1. репликацию ДНК— процесс самоудвоения молекулы ДНК, осуществляемый под контролем ферментов. На каждой из цепей ДНК, образовавшихся после разрыва водородных связей, при участии фермента ДНК-полимеразы синтезируется дочерняя цепь ДНК. Материалом для синтеза служат свободные нуклеотиды, имеющиеся в цитоплазме клеток.

Биологический смысл репликации заключается в точной передаче наследственной информации от материнской молекулы к дочерним, что в норме и происходит при делении соматических клеток.

Молекула ДНК состоит из двух комплементарных цепей. Эти цепи удерживаются слабыми водородными связями, способными разрываться под действием ферментов.

Молекула способна к самоудвоению (репликации), причем на каждой старой половине молекулы синтезируется новая ее половина.

Кроме того, на молекуле ДНК может синтезироваться молекула и-РНК, которая затем переносит полученную от ДНК информацию к месту синтеза белка.

Передача информации и синтез белка идут по матричному принципу, сравнимому с работой печатного станка в типографии. Информация от ДНК многократно копируется. Если при копировании произойдут ошибки, то они повторятся во всех последующих копиях.

Правда, некоторые ошибки при копировании информации молекулой ДНК могут исправляться — процесс устранения ошибок называется репарацией. Первой из реакций в процессе передачи информации является репликация молекулы ДНК и синтез новых цепей ДНК.

2. транскрипцию – синтез и-РНК на ДНК, процесс снятия информации с молекулы ДНК, синтезируемой на ней молекулой и-РНК.

И-РНК состоит из одной цепи и синтезируется на ДНК в соответствии с правилом комплементарности при участии фермента, который активирует начало и конец синтеза молекулы и-РНК.

Готовая молекула и-РНК выходит в цитоплазму на рибосомы, где происходит синтез полипептидных цепей.

3. трансляцию— синтез белка на и-РНК; процесс перевода информации, содержащейся в последовательности нуклеотидов и-РНК, в последовательность аминокислот в полипептиде.

4. синтез РНК или ДНК на РНК вирусов

Последовательность матричных реакций при биосинтезе белков можно представить в виде схемы:

Источник

Биосинтез белка. Генетический код

Наследственная информация – это информация о строении белка (информация о том, какие аминокислоты в каком порядке соединять при синтезе первичной структуры белка).

Информация о строении белков закодирована в ДНК, которая у эукариот входит в состав хромосом и находится в ядре. Участок ДНК (хромосомы), в котором закодирована информация об одном белке, называется ген.

Транскрипция – это переписывание информации с ДНК на иРНК (информационную РНК). иРНК переносит информацию из ядра в цитоплазму, к месту синтеза белка (к рибосоме).

Трансляция – это процесс биосинтеза белка. Внутри рибосомы к кодонам иРНК по принципу комплементарности присоединяются антикодоны тРНК. Рибосома пептидной связью соединяет между собой аминокислоты, принесенные тРНК, получается белок.

Реакции транскрипции, трансляции, а так же репликации (удвоения ДНК) являются реакциями матричного синтеза. ДНК служит матрицей для синтеза иРНК, иРНК служит матрицей для синтеза белка.

Генетический код – это способ, с помощью которого информация о строении белка записана в ДНК.

Свойства генкода

1) Триплетность: одна аминокислота кодируется тремя нуклеотидами. Эти 3 нуклеотида в ДНК называются триплет, в иРНК – кодон, в тРНК – антикодон (но в ЕГЭ может быть и «кодовый триплет» и т.п.)

2) Избыточность (вырожденность): аминокислот всего 20, а триплетов, кодирующих аминокислоты – 61, поэтому каждая аминокислота кодируется несколькими триплетами.

3) Однозначность: каждый триплет (кодон) кодирует только одну аминокислоту.

4) Универсальность: генетический код одинаков для всех живых организмов на Земле.

Задачи

Задачи на количество нуклеотидов/аминокислот
3 нуклеотида = 1 триплет = 1 аминокислота = 1 тРНК

Задачи на АТГЦ
ДНК иРНК тРНК
А У А
Т А У
Г Ц Г
Ц Г Ц

Еще можно почитать

Тесты и задания

Выберите один, наиболее правильный вариант. иРНК является копией
1) одного гена или группы генов
2) цепи молекулы белка
3) одной молекулы белка
4) части плазматической мембраны

Выберите один, наиболее правильный вариант. Первичная структура молекулы белка, заданная последовательностью нуклеотидов иРНК, формируется в процессе
1) трансляции
2) транскрипции
3) редупликации
4) денатурации

Выберите один, наиболее правильный вариант. Синтез гемоглобина в клетке контролирует определенный отрезок молекулы ДНК, который называют
1) кодоном
2) триплетом
3) генетическим кодом
4) геном

Выберите один, наиболее правильный вариант. Одной и той же аминокислоте соответствует антикодон ЦАА на транспортной РНК и триплет на ДНК
1) ЦАА
2) ЦУУ
3) ГТТ
4) ГАА

Выберите один, наиболее правильный вариант. Антикодону ААУ на транспортной РНК соответствует триплет на ДНК
1) ТТА
2) ААТ
3) ААА
4) ТТТ

Выберите один, наиболее правильный вариант. Каждая аминокислота в клетке кодируется
1) одной молекулой ДНК
2) несколькими триплетами
3) несколькими генами
4) одним нуклеотидом

Выберите один, наиболее правильный вариант. Функциональная единица генетического кода
1) нуклеотид
2) триплет
3) аминокислота
4) тРНК

Выберите один, наиболее правильный вариант. Какой антикодон транспортной РНК соответствует триплету ТГА в молекуле ДНК
1) АЦУ
2) ЦУГ
3) УГА
4) АГА

Выберите один, наиболее правильный вариант. Генетический код является универсальным, так как
1) каждая аминокислота кодируется тройкой нуклеотидов
2) место аминокислоты в молекуле белка определяют разные триплеты
3) он един для всех живущих на Земле существ
4) несколько триплетов кодируют одну аминокислоту

Выберите один, наиболее правильный вариант. Участок ДНК, содержащий информацию об одной полипептидной цепи, называют
1) хромосомой
2) триплетом
3) геном
4) кодом

Выберите один, наиболее правильный вариант. Матрицей для трансляции служит молекула
1) тРНК
2) ДНК
3) рРНК
4) иРНК

ТРАНСКРИПЦИЯ
Все перечисленные ниже признаки, кроме двух, можно использовать для описания транскрипции у эукариот. Определите два признака, «выпадающих» из общего списка, и запишите цифры, под которыми они указаны.

1) образование полинуклеотидной цепи
2) удвоение молекулы ДНК
3) матрицей служит молекула ДНК
4) соединяются нуклеотиды, содержащие дезоксирибозу
5) происходит в ядре

2. Установите соответствие между характеристиками и процессами: 1) транскрипция, 2) трансляция. Запишите цифры 1 и 2 в порядке, соответствующем буквам.
А) синтезируется три вида РНК
Б) происходит с помощью рибосом
В) образуется пептидная связь между мономерами
Г) у эукариот происходит в ядре
Д) в качестве матрицы используется ДНК
Е) осуществляется ферментом РНК-полимеразой

2. Установите соответствие между характеристиками и реакциями матричного синтеза: 1) репликация, 2) транскрипция, 3) трансляция. Запишите цифры 1-3 в порядке, соответствующем буквам.
А) работа фермента РНК-полимераза
Б) образование полисомы
В) синтез всех видов РНК
Г) работа фермента ДНК-полимераза
Д) рост полипептидной цепи

ТРАНСЛЯЦИЯ КРОМЕ
1. Все перечисленные ниже понятия, кроме двух, используются для описания трансляции. Определите два признака, «выпадающие» из общего списка, и запишите цифры, под которыми они указаны.

1) матричный синтез
2) митотическое веретено
3) полисома
4) пептидная связь
5) высшие жирные кислоты

2. Все перечисленные ниже термины, кроме двух, используются для описания процесса трансляции. Определите два термина, «выпадающих» из общего списка, и запишите в таблицу цифры, под которыми они указаны.
1) кодон
2) триплет
3) фотолиз
4) репликация
5) матрица

БИОСИНТЕЗ
Выберите три варианта. Биосинтез белка, в отличие от фотосинтеза, происходит

1) в хлоропластах
2) в митохондриях
3) в реакциях пластического обмена
4) в реакциях матричного типа
5) в лизосомах
6) в лейкопластах

БИОСИНТЕЗ ПОСЛЕДОВАТЕЛЬНОСТЬ
1. Определите последовательность процессов, обеспечивающих биосинтез белка. Запишите соответствующую последовательность цифр.

1) образование пептидных связей между аминокислотами
2) присоединение антикодона тРНК к комплементарному кодону иРНК
3) синтез молекул иРНК на ДНК
4) перемещение иРНК в цитоплазме и ее расположение на рибосоме
5) доставка с помощью тРНК аминокислот к рибосоме

2. Установите последовательность процессов биосинтеза белка в клетке. Запишите соответствующую последовательность цифр.
1) образование пептидной связи между аминокислотами
2) взаимодействие кодона иРНК и антикодона тРНК
3) выход тРНК из рибосомы
4) соединение иРНК с рибосомой
5) выход иРНК из ядра в цитоплазму
6) синтез иРНК

3. Установите последовательность процессов в биосинтезе белка. Запишите соответствующую последовательность цифр.
1) синтез иРНК на ДНК
2) доставка аминокислоты к рибосоме
3) образование пептидной связи между аминокислотами
4) присоединение аминокислоты к тРНК
5) соединение иРНК с двумя субъединицами рибосомы

4. Установите последовательность этапов биосинтеза белка. Запишите соответствующую последовательность цифр.
1) отделение молекулы белка от рибосомы
2) присоединение тРНК к стартовому кодону
3) транскрипция
4) удлинение полипептидной цепи
5) выход мРНК из ядра в цитоплазму

5. Установите правильную последовательность процессов биосинтеза белка. Запишите соответствующую последовательность цифр.
1) присоединение аминокислоты к пептиду
2) синтез иРНК на ДНК
3) узнавание кодоном антикодона
4) объединение иРНК с рибосомой
5) выход иРНК в цитоплазму

БИОСИНТЕЗ КРОМЕ
1. Все приведённые ниже признаки, кроме двух, можно использовать для описания процесса биосинтеза белка в клетке. Определите два признака, «выпадающих» из общего списка, и запишите в ответ цифры, под которыми они указаны.

1) Процесс происходит при наличии ферментов.
2) Центральная роль в процессе принадлежит молекулам РНК.
3) Процесс сопровождается синтезом АТФ.
4) Мономерами для образования молекул служат аминокислоты.
5) Сборка молекул белков осуществляется в лизосомах.

2. Все перечисленные ниже признаки, кроме двух, используют для описания процессов, необходимых для синтеза полипептидной цепи. Определите два признака, «выпадающих» из общего списка, и запишите цифры, под которыми они указаны.
1) транскрипция информационной РНК в ядре
2) транспорт аминокислот из цитоплазмы на рибосому
3) репликация ДНК
4) образование пировиноградной кислоты
5) соединение аминокислот

МАТРИЧНЫЕ
Выберите три варианта. В результате реакций матричного типа синтезируются молекулы

1) полисахаридов
2) ДНК
3) моносахаридов
4) иРНК
5) липидов
6) белка

В каких из перечисленных органоидов клетки происходят реакции матричного синтеза? Определите три верных утверждения из общего списка, и запишите цифры, под которыми они указаны.
1) центриоли
2) лизосомы
3) аппарат Гольджи
4) рибосомы
5) митохондрии
6) хлоропласты

Выберите из перечисленных ниже реакций две, относящихся к реакциям матричного синтеза. Запишите цифры, под которыми они указаны.
1) синтез целлюлозы
2) синтез АТФ
3) биосинтез белка
4) окисление глюкозы
5) репликация ДНК

ГЕНЕТИЧЕСКИЙ КОД
1. Выберите три верных ответа из шести и запишите цифры, под которыми они указаны. К каким последствиям приведёт замена одного нуклеотида на другой в последовательности иРНК, кодирующей белок?

1) В белке обязательно произойдёт замена одной аминокислоты на другую.
2) Произойдёт замена нескольких аминокислот.
3) Может произойти замена одной аминокислоты на другую.
4) Синтез белка в этой точке может прерваться.
5) Аминокислотная последовательность белка может остаться прежней.
6) Синтез белка в этой точке всегда прерывается.

2. Выберите три верных ответа из шести и запишите цифры, под которыми они указаны. Укажите свойства генетического кода.
1) Код универсален только для эукариотических клеток.
2) Код универсален для эукариотических клеток, бактерий и вирусов.
3) Один триплет кодирует последовательность аминокислот в молекуле белка.
4) Код вырожден, так как одна аминокислота может кодироваться несколькими кодонами.
5) 20 аминокислот кодируются 61 кодоном.
6) Код прерывается, так как между кодонами есть промежутки.

2. Сколько нуклеотидов содержит м-РНК, если синтезированный по ней белок состоит из 180 аминокислотных остатков? В ответе запишите только соответствующее число.

3. Сколько нуклеотидов содержит м-РНК, если синтезированный по ней белок состоит из 250 аминокислотных остатков? В ответе запишите только соответствующее число.

4. Белок состоит из 220 аминокислотных звеньев (остатков). Установите число нуклеотидов участка молекулы иРНК, кодирующей данный белок. В ответе запишите только соответствующее число.

2. Белок состоит из 180 аминокислотных остатков. Сколько нуклеотидов в гене, в котором закодирована последовательность аминокислот в этом белке. В ответе запишите только соответствующее число.

3. Фрагмент молекулы ДНК кодирует 36 аминокислот. Сколько нуклеотидов содержит этот фрагмент молекулы ДНК? В ответе запишите соответствующее число.

4. Сколько нуклеотидов в участке гена кодируют фрагмент белка из 25 аминокислотных остатков? В ответ запишите только соответствующее число.

5. Сколько нуклеотидов во фрагменте матричной цепи ДНК кодируют 55 аминокислот во фрагменте полипептида? В ответе запишите только соответствующее число.

2. Фрагмент молекулы белка состоит из 25 аминокислот. Сколько молекул тРНК участвовали в его создании? В ответе запишите только соответствующее число.

3. Какое количество молекул транспортных РНК участвовали в трансляции, если участок гена содержит 300 нуклеотидных остатков? В ответе запишите только соответствующее число.

4. Белок состоит из 220 аминокислотных звеньев (остатков). Установите число молекул тРНК, необходимых для переноса аминокислот к месту синтеза белка. В ответе запишите только соответствующее число.

5. Сколько молекул тРНК доставляют на рибосому 30 аминокислот для синтеза белка? В ответе запишите только соответствующее число.

2. Сколько триплетов кодирует 32 аминокислоты? В ответ запишите только соответствующее число.

3. Сколько триплетов участвует в синтезе белка, состоящего из 510 аминокислот? В ответе запишите только количество триплетов.

4. Сколько триплетов в молекуле иРНК кодируют белок, состоящий из 102 аминокислот? В ответе запишите только соответствующее число.

2. Ген состоит из 900 нуклеотидов. Сколько аминокислот кодирует этот ген, сколько транспортных РНК будет участвовать в синтезе белка на этом гене? Запишите два числа в порядке, указанном в задании, без разделителей (пробелов, запятых и т.п.).

3. Какое число аминокислот в белке, если его кодирующий ген состоит из 600 нуклеотидов? В ответ запишите только соответствующее число.

4. Сколько аминокислот кодирует 1203 нуклеотида? В ответ запишите только количество аминокислот.

5. Сколько аминокислот необходимо для синтеза полипептида, если кодирующая его часть иРНК содержит 108 нуклеотидов? В ответе запишите только соответствующее число.

СЛОЖНО
Белок имеет относительную молекулярную массу 6000. Определите количество аминокислот в молекуле белка, если относительная молекулярная масса одного аминокислотного остатка 120. В ответе запишите только соответствующее число.

В двух цепях молекулы ДНК насчитывается 3000 нуклеотидов. Информация о структуре белка кодируется на одной из цепей. Подсчитайте сколько закодировано аминокислот на одной цепи ДНК. В ответ запишите только соответствующее количеству аминокислот число.

При транскрипции гена была синтезирована иРНК длиной 680 нуклеотидов. Затем из неё были вырезаны три интрона (некодирующих участка) по 82, 114 и 127 нуклеотидов. Сколько аминокислот будет содержать белок, полученный при трансляции этой иРНК? В ответ запишите только количество аминокислот.

АМИНОКИСЛОТ-НУКЛЕОТИДОВ-ТРИПЛЕТОВ
В процессе трансляции молекулы гормона окситоцина участвовало 9 молекул тРНК. Определите число аминокислот, входящих в состав синтезируемого белка, а также число триплетов и нуклеотидов, которые кодируют этот белок. Запишите числа в порядке, указанном в задании, без разделителей (пробелов, запятых и т.п.).

АМИНОКИСЛОТ-НУКЛЕОТИДОВ-ТРНК
Участок молекулы ДНК содержит 10 триплетов. Сколько аминокислот зашифровано в этом участке? Сколько потребуется нуклеотидов информационной РНК и сколько потребуется транспортных РНК для синтеза участка молекулы белка, состоящего из этих аминокислот? Запишите числа в порядке, указанном в задании, без разделителей (пробелов, запятых и т.п.).

НУКЛЕОТИДОВ-НУКЛЕОТИДОВ-ТРНК
Белок состоит из 240 аминокислот. Установите число нуклеотидов иРНК и число нуклеотидов ДНК, кодирующих данные аминокислоты, а также общее число молекул тРНК, которые необходимы для переноса этих аминокислот к месту синтеза белка. Запишите три числа в порядке, указанном в задании, без разделителей (пробелов, запятых и т.п.).

НУКЛЕОТИДОВ-ТРИПЛЕТОВ-ТРНК
Участок молекулы белка содержит 3 аминокислоты. Сколько потребовалось нуклеотидов иРНК, триплетов иРНК и транспортных РНК для синтеза этого участка? Запишите числа в порядке, указанном в задании, без разделителей (пробелов, запятых и т.п.).

Сколько нуклеотидов составляют один стоп-кодон иРНК, сколько стоп-кодонов в генетическом коде? Запишите два числа в порядке, указанном в задании, без разделителей (пробелов, запятых и т.п.).

Сколько нуклеотидов составляют антикодон тРНК, кодон иРНК, триплет ДНК? Запишите три числа в порядке, указанном в задании, без разделителей (пробелов, запятых и т.п.).

ген генетический код биосинтез белка. 0858. ген генетический код биосинтез белка фото. ген генетический код биосинтез белка-0858. картинка ген генетический код биосинтез белка. картинка 0858. В статье мы дадим опре­де­ле­ние био­син­те­зу и рас­смот­рим ос­нов­ные этапы син­те­за белков. Разберёмся, чем трансляция отличается от транскрипции.
Рассмотрите рисунок с изображением процессов, протекающих в клетке, и укажите А) название процесса, обозначенного буквой А, Б) название процесса, обозначенного буквой Б, В) название типа химических реакций. Для каждой буквы выберите соответствующий термин из предложенного списка.
1) репликация
2) транскрипция
3) трансляция
4) денатурация
5) реакции экзотермические
6) реакции замещения
7) реакции матричного синтеза
8) реакции расщепления

ген генетический код биосинтез белка. 18039. ген генетический код биосинтез белка фото. ген генетический код биосинтез белка-18039. картинка ген генетический код биосинтез белка. картинка 18039. В статье мы дадим опре­де­ле­ние био­син­те­зу и рас­смот­рим ос­нов­ные этапы син­те­за белков. Разберёмся, чем трансляция отличается от транскрипции.
Рассмотрите рисунок и укажите (А) название процесса 1, (Б) название процесса 2, (в) конечный продукт процесса 2. Для каждой буквы выберите соответствующий термин или соответствующее понятие из предложенного списка.
1) тРНК
2) полипептид
3) рибосома
4) репликация
5) трансляция
6) конъюгация
7) АТФ
8) транскрипция

ген генетический код биосинтез белка. 6033. ген генетический код биосинтез белка фото. ген генетический код биосинтез белка-6033. картинка ген генетический код биосинтез белка. картинка 6033. В статье мы дадим опре­де­ле­ние био­син­те­зу и рас­смот­рим ос­нов­ные этапы син­те­за белков. Разберёмся, чем трансляция отличается от транскрипции.
Все перечисленные ниже признаки, кроме двух, используются для описания изображенного на рисунке процесса. Определите два признака, «выпадающих» из общего списка, и запишите цифры, под которыми они указаны.
1) по принципу комплементарности последовательность нуклеотидов молекулы ДНК переводится в последовательность нуклеотидов молекул различных видов РНК
2) процесс перевода последовательности нуклеотидов в последовательность аминокислот
3) процесс переноса генетической информации из ядра к месту синтеза белка
4) процесс происходит в рибосомах
5) результат процесса – синтез РНК

Молекулярная масса полипептида составляет 30000 у.е. Определите длину кодирующего его гена, если молекулярная масса одной аминокислоты в среднем равна 100, а расстояние между нуклеотидами в ДНК составляет 0,34 нм. В ответе запишите только соответствующее число.

Установите соответствие между функциями и структурами, участвующими в биосинтезе белка: 1) ген, 2) рибосома, 3) тРНК. Запишите цифры 1-3 в порядке, соответствующем буквам.
А) транспортирует аминокислоты
Б) кодирует наследственную информацию
В) участвует в процессе транскрипции
Г) образуют полисомы
Д) место синтеза белка

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *