генетический код является универсальным так как

Биология клетки/Часть 1. Клетка как она есть/3/4

Содержание

Дезоксирибонуклеи́новая кислота́ (ДНК) представляет собой полимерную молекулу сложной структуры длиной от нескольких тысяч пар нуклеотидов (пн) до нескольких миллионов пар нуклеотидов.

1 метр), длина всех 23 молекул ДНК гаплоидного набора хромосом)

В ДНК зашифрована информация о первичной структуре белков посредством комбинации нуклеотидов. Процесс «переписывания» этого кода с ДНК в молекулы РНК называется транскрипцией, а синтез белка в рибосомах по матрице иРНК, в ходе которого происходит «перевод» нуклеотидного кода в последовательность аминокислот — трансляцией.

Генетический код ДНК состоит из триплетов, то есть из тройных комбинаций нуклеотидов. При транскрипции генетический код «переписывается» в последовательность нуклеотидов иРНК. Тройки нуклеотидов иРНК, кодирующие аминокислоты, называются кодонами. Из 64 возможных триплетов (4³) 61 являются смысловым кодонами, то есть кодируют аминокислоты. Все кодоны триплетны, неразрывны и не перекрываются в тексте (как считалось по одной из гипотез), а также не разделены межкодонными знаками. Все кодоны однозначны, то есть каждый кодон кодирует единственную аминокислоту.

Генетический код содержит в себе также знаки пунктуации (начала и конца трансляции). Кодоны AUG, GUG и UUG у прокариот помимо кодирования аминокислот кодируют ещё и команду начала трансляции. Однако однозначность генетического кода при этом не нарушается, так как инициирующие знаки располагаются в определенном окружении (контексте), способном образовывать самокомплементарные субъединицы. У эукариот инициирующими триплетами являются AUG, UUG, AUA и ACG. Три кодона из 64 (UGA, UAG, UAA) не кодируют аминокислот, а служат знаками окончания трансляции (стоп-кодоны). Обычно ими заканчиваются все транслируемые гены. Возникновение в результате мутации нонсенс-кодонов внутри гена приводит к преждевременной терминации трансляции и прекращению синтеза белка.

В1953 году Фрэнсис Крик совместно с Джеймсом Уотсоном сделал предположение, что только 20 кодонов генетического кода имеют значение, а остальные 44 триплета являются бессмысленными. В 1961 Ф. Крик с сотрудниками получил подтверждение гипотезы триплетного неперекрывающегося кода без запятых.

Расшифровать генетический код удалось in vitro, благодаря технике белкового синтеза в бесклеточных системах, то есть в клеточных экстрактах, содержащих все необходимые компоненты аппарата трансляции (тРНК, иРНК, рибосомы, аминокислоты, ферменты, источник энергии (АТФ и ГТФ), а также вспомогательные компоненты), за исключением только принадлежащий клетке мРНК. Вводя в такие экстракты искусственно синтезированные мРНК, можно было изучать включения меченых аминокислот в строящиеся белки. М. Ниренберг и Ф. Ледер провели опыт по помещению в бесклеточную систему трансляции различных олигорибонуклеотидов и выявили, что конкретные тририбонуклеотиды, ассоциированные с рибосомами, связывают только определенные фракции тРНК, с определенными мечеными аминокислотами. Например, олигорибонуклеотид УУУ связывает тРНК, имеющую антикодон ААА и несущую аминокислоту фенилаланин. Следовательно, кодон мРНК УУУ кодирует аминокислоту фенилаланин. С помощью такого метода к 1965 году генетический код был расшифрован полностью.

Летом 1966 года на симпозиуме по количественной биологии в Колд-Спринг-Харборе (США) все полученные данные были систематизированы Ф. Криком. Расшифрованный генетический код E. coli, исследованный методом in vitro, полностью согласовывался также с другими независимыми данными, полученными методом in vivo для других видов.

Генетический код — способ кодирования последовательностью нуклеотидов в ДНК аминокислотной последовательности белков. Для генетического кода характерны следующие свойства (см. следующие разделы):

подряд, без пропусков

Генные знаки препинания Участок ДНК, кодирующий одну полипептидную цепь или одну молекулу РНК, называется геном. После каждого кодирующего белок участка гена находится стоп-кодон, регулирующий трансляцию. К таким «знакам препинания» относятся и стоп-кодоны UAA, UAG и UGA. Эти сигналы опознаёт рибосома, но не РНК_полимераза — для неё на ДНК есть свои «стоп-сигналы», состоящие более чем из трех нуклеотидов.

Кодон AUG (первый после лидерной последовательности) выполняет роль «заглавной буквы», то есть кодирует метионин (у эукариот) или формилметионин (у прокариот), с которого начинается образование полипептидной цепи в процессе трансляции.

Кодоны UAA (охра, или Ochre), UAG (амбер-кодон, или Amber) и UGA (опал, или Opal) являются терминаторными кодонами и кодируют прекращение (терминацию) синтеза полипептиднойцепи трансляции.

Если AUG — «заглавная буква», стоп-кодоны — «точки», то с «абзацем» можно сравнить оперон и комплементарная ему мРНК, присутствующие только в прокариотической клетке. Оперон — участок ДНК бактерии, отвечающий за отдельный участок метаболического пути. Он кодирует совместно или последовательно работающие белки, объединенные под одним (или несколькими) промоторами.

У эукариот внутригенные стоп-кодоны и иные «знаки препинания» отсутствуют, что было экспериментально доказано Сеймуром Бензером и Фрэнсисом Криком в 1961 году. У прокариот с оперона часто считывается одна молекула полицистронной мРНК. В её нуклеотидной последовательности есть несколько стоп-кодонов, а между ними — рамки считывания для нескольких полипептидных цепочек. При трансляции прокариотическая рибосома «перепрыгивает» стоп-кодоны и продолжает синтез следующего белка, а синтезированная полипептидная цепь при этом отделяется от рибосомы.

В 1956 году американский ученый Джордж Гамов высказал предположение о перекрываемости генетического кода. Оно заключается в следующем: предположим, у нас есть следующая последовательность нуклеотидов: УУАГУААЦГУАА

В этой последовательности могут действовать кодоны

Плюс перекрываемого кода — компактность (недаром это свойство обнаружено у некоторых генов вирусов). Минус — явная зависимость структуры белка от замены нуклеотида.

После расшифровки генетического кода было показано, что он неперыкрывающийся, то есть в последовательности нуклеотидов УУАГУААЦГУАА действуют только кодоны УУА ГУА АЦГ УАА.

Как правило, для каждого гена существует одна открытая рамка считывания.

У бактерий многие иРНК полицистронные. Они кодируют несколько полипептидных цепей, и кодирующие их последовательности разделены стоп-кодонами. При трансляции бактериальная рибосома «перескакивает» стоп-кодоны, сразу же начиная синтез следующей полипептидной цепи; белок, синтез которого закончился, при этом отделяется от рибосомы.

В 1954 году американский ученый Джордж Гамов высказал предположение о кодировании одним кодоном одной аминокислоты, но это предположение оказалось неверным. Так как триплет состоит из трёх последовательных нуклеотидов, а всего этих нуклеотидов четыре различных, возможных триплетов может быть 4 ³=64 (кроме стоп-кодонов UAA, UAG и UGA, так что не 64, а 61), что превышает количество существующих аминокислот. В связи с этим было высказано предположение, подтвердившееся в дальнейшем, о так называемой вырожденности генетического кода — одну аминокислоту кодирует больше одного триплета, за исключением метионина и триптофана.

Отдельные аминокислоты кодируются группами (сериями) кодонов-синонимов. 18 серий из 20 содержат от двух до шести кодонов, две серии (для аминокислот метионина и триптофана) не вырождены и содержат по одному кодону. Средняя вырожденность генетического кода приблизительно равна трём кодонам на серию.

Вырожденность называется систематической, если синонимичные кодоны различаются либо пуринами, либо пиримидинами, либо вообще любыми из четырех своих нуклеотидов. Этим принципам удовлетворяют только 30 пар кодонов из 32 возможных, а также только восемь тетрад из 16. Остальные же варианты вырожденности называются несистематическими. Они относятся, как правило, к большим сериям: лейцин и аргинин — связные серии, серин — несвязная серия, изолейцин, кодируемый в три кодона — полносвязная серия.

Единственный известный на сегодняшний день пример, когда это свойство нарушается — использование кодона UGA у инфузории Euplotes crassus. В зависимости от окружения он кодирует две аминокислоты — цистеин и селеноцистеин [1].

Универсальность генетического кода означает использование всеми живыми организмами одного генетического кода, то есть все живые существа используют одинаковые наборы кодонов для кодирования одних и тех же аминокислот.

Источник

Биосинтез белка и нуклеиновых кислот. Гены, генетический код

В обмене веществ организма ведущая роль принадлежит белкам и нуклеиновым кислотам.
Белковые вещества составляют основу всех жизненно важных структур клетки, обладают необычайно высокой реакционной способностью, наделены каталитическими функциями.
Нуклеиновые кислоты входят в состав важнейшего органа клетки — ядра, а также цитоплазмы, рибосом, митохондрий и т. д. Нуклеиновые кислоты играют важную, первостепенную роль в наследственности, изменчивости организма, в синтезе белка.

План синтеза белка хранится в ядре клетки, а непосредственно синтез происходит вне ядра, поэтому необходима служба доставки закодированного плана из ядра к месту синтеза. Такую службу доставки исполняют молекулы РНК.

После дальнейших изменений этот вид закодированной и-РНК готов. и-РНК выходит из ядра и направляется к месту синтеза белка, где буквы и-РНК расшифровываются. Каждый набор из трех букв и-РНК образует «букву», обозначающее одну конкретную аминокислоту.

Другой вид РНК отыскивает эту аминокислоту, захватывает ее с помощью фермента и доставляет к месту синтеза белка. Эта РНК называется транспортной, или т-РНК. По мере прочтения и перевода сообщения и-РНК цепочка аминокислот растет. Эта цепочка закручивается и укладывается в уникальную форму, создавая один вид белка. Примечателен даже процесс укладки белка: на то, чтобы с помощью компьютера просчитать все варианты укладки белка среднего размера, состоящего из 100 аминокислот, потребовалось бы 1027 (!) лет. А для образования в организме цепочки из 20 аминокислот требуется не более одной секунды, и этот процесс происходит непрерывно во всех клетках тела.

Гены, генетический код и его свойства.

На Земле живет около 7 млрд людей. Если не считать 25—30 млн пар однояйцовых близнецов, то генетически все люди разные : каждый уникален, обладает неповторимыми наследственными особенностями, свойствами характера, способностями, темпераментом.

Такие различия объясняются различиями в генотипах—наборах генов организма; у каждого он уникален. Генетические признаки конкретного организма воплощаются в белках — следовательно, и строение белка одного человека отличается, хотя и совсем немного, от белка другого человека.

Ген – единица наследственной информации организма, которой соответствует отдельный участок ДНК

Генетический код состоит из троек (триплетов) нуклеотидов ДНК, комбинирующихся в разной последовательности (ААТ, ГЦА, АЦГ, ТГЦ и т.д.), каждый из которых кодирует определенную аминокислоту (которая будет встроена в полипептидную цепь).

генетический код является универсальным так как. ege biologiya 0127. генетический код является универсальным так как фото. генетический код является универсальным так как-ege biologiya 0127. картинка генетический код является универсальным так как. картинка ege biologiya 0127. Дезоксирибонуклеи́новая кислота́ (ДНК) представляет собой полимерную молекулу сложной структуры длиной от нескольких тысяч пар нуклеотидов (пн) до нескольких миллионов пар нуклеотидов.

Основные свойства генетического кода:

генетический код является универсальным так как. ege biologiya 0128. генетический код является универсальным так как фото. генетический код является универсальным так как-ege biologiya 0128. картинка генетический код является универсальным так как. картинка ege biologiya 0128. Дезоксирибонуклеи́новая кислота́ (ДНК) представляет собой полимерную молекулу сложной структуры длиной от нескольких тысяч пар нуклеотидов (пн) до нескольких миллионов пар нуклеотидов.

2. Избыточность ( вырожденность ) кода является следствием его триплетности и означает то, что одна аминокислота может кодироваться несколькими триплетами (поскольку аминокислот 20, а триплетов — 64), за исключением метионина и триптофана, которые кодируются только одним триплетом. Кроме того, некоторые триплеты выполняют специфические функции: в молекуле и-РНК триплеты УАА, УАГ, УГА — являются терминирующими кодонами, т. е. стоп-сигналами, прекращающими синтез полипептидной цепи. Триплет, соответствующий метионину (АУГ), стоящий в начале цепи ДНК, не кодирует аминокислоту, а выполняет функцию инициирования (возбуждения) считывания.

4. Коллинеарность кода, т.е. последовательность нуклеотидов в гене точно соответствует последовательности аминокислот в белке.

Существуют таблицы генетического кода для расшифровки кодонов и- РНК и построения цепочек белковых молекул.

генетический код является универсальным так как. ege biologiya 0126. генетический код является универсальным так как фото. генетический код является универсальным так как-ege biologiya 0126. картинка генетический код является универсальным так как. картинка ege biologiya 0126. Дезоксирибонуклеи́новая кислота́ (ДНК) представляет собой полимерную молекулу сложной структуры длиной от нескольких тысяч пар нуклеотидов (пн) до нескольких миллионов пар нуклеотидов.

Реакции матричного синтеза.

В живых системах встречается реакции, неизвестные в неживой природе — реакции матричного синтеза.

Термином «матрица» в технике обозначают форму, употребляемую для отливки монет, медалей, типографского шрифта: затвердевший металл в точности воспроизводит все детали формы, служившей для отливки. Матричный синтез напоминает отливку на матрице: новые молекулы синтезируются в точном соответствии с планом, заложенным в структуре уже существующих молекул.

Матричный принцип лежит в основе важнейших синтетических реакций клетки, та-ких, как синтез нуклеиновых кислот и белков. В этих реакциях обеспечивается точная, строго специфичная последовательность мономерных звеньев в синтезируемых полимерах.

генетический код является универсальным так как. ege biologiya 0129. генетический код является универсальным так как фото. генетический код является универсальным так как-ege biologiya 0129. картинка генетический код является универсальным так как. картинка ege biologiya 0129. Дезоксирибонуклеи́новая кислота́ (ДНК) представляет собой полимерную молекулу сложной структуры длиной от нескольких тысяч пар нуклеотидов (пн) до нескольких миллионов пар нуклеотидов.

Мономерные молекулы, из которых синтезируется полимер, — нуклеотиды или аминокислоты — в соответствии с принципом комплементарности располагаются и фиксируются на матрице в строго определенном, заданном порядке.

Затем происходит «сшивание» мономерных звеньев в полимерную цепь, и готовый полимер сбрасывается с матрицы.

После этого матрица готова к сборке новой полимерной молекулы. Понятно, что как на данной форме может производиться отливка только какой-то одной монеты, одной буквы, так и на данной матричной молекуле может идти «сборка» только какого-то одного полимера.

Матричный тип реакций — специфическая особенность химизма живых систем. Они являются основой фундаментального свойства всего живого — его способности к воспроизведению себе подобного.

Реакции матричного синтеза

Молекула ДНК состоит из двух комплементарных цепей. Эти цепи удерживаются слабыми водородными связями, способными разрываться под действием ферментов. Молекула ДНК способна к самоудвоению (репликации), причем на каждой старой половине молекулы синтезируется новая ее половина.
Кроме того, на молекуле ДНК может синтезироваться молекула и-РНК, которая затем переносит полученную от ДНК информацию к месту синтеза белка.

Передача информации и синтез белка идут по матричному принципу, сравнимому с работой печатного станка в типографии. Информация от ДНК многократно копируется. Если при копировании произойдут ошибки, то они повторятся во всех последующих копиях.

генетический код является универсальным так как. ege biologiya 012 1. генетический код является универсальным так как фото. генетический код является универсальным так как-ege biologiya 012 1. картинка генетический код является универсальным так как. картинка ege biologiya 012 1. Дезоксирибонуклеи́новая кислота́ (ДНК) представляет собой полимерную молекулу сложной структуры длиной от нескольких тысяч пар нуклеотидов (пн) до нескольких миллионов пар нуклеотидов.

Правда, некоторые ошибки при копировании информации молекулой ДНК могут исправляться — процесс устранения ошибок называется репарацией. Первой из реакций в процессе передачи информации является репликация молекулы ДНК и синтез новых цепей ДНК.

2. Транскрипция (от лат. transcriptio — переписывание) — процесс синтеза РНК с использованием ДНК в качестве матрицы, происходящий во всех живых клетках. Другими словами, это перенос генетической информации с ДНК на РНК.

Готовая молекула и-РНК выходит в цитоплазму на рибосомы, где происходит синтез полипептидных цепей.

генетический код является универсальным так как. ege biologiya 012 2. генетический код является универсальным так как фото. генетический код является универсальным так как-ege biologiya 012 2. картинка генетический код является универсальным так как. картинка ege biologiya 012 2. Дезоксирибонуклеи́новая кислота́ (ДНК) представляет собой полимерную молекулу сложной структуры длиной от нескольких тысяч пар нуклеотидов (пн) до нескольких миллионов пар нуклеотидов.

3. Трансляция (от лат. translatio — перенос, перемещение) — процесс синтеза белка из аминокислот на матрице информационной (матричной) РНК (иРНК, мРНК), осуществляемый рибосомой. Иными словами, это процесс перевода информации, со-держащейся в последовательности нуклеотидов и-РНК, в последовательность амино-кислот в полипептиде.

генетический код является универсальным так как. ege biologiya 012 3. генетический код является универсальным так как фото. генетический код является универсальным так как-ege biologiya 012 3. картинка генетический код является универсальным так как. картинка ege biologiya 012 3. Дезоксирибонуклеи́новая кислота́ (ДНК) представляет собой полимерную молекулу сложной структуры длиной от нескольких тысяч пар нуклеотидов (пн) до нескольких миллионов пар нуклеотидов.

4. Обратная транскрипция — это процесс образования двуцепочечной ДНК на основании информации из одноцепочечной РНК. Данный процесс называется обратной транскрипцией, так как передача генетической информации при этом происходит в «обратном», относительно транскрипции, направлении. Идея обратной транскрипции вначале была очень непопулярна, так как противоречила центральной догме молекулярной биологии, которая предполагала, что ДНК транскрибируется в РНК и далее транслируется в белки.

Последовательность матричных реакций при биосинтезе белков можно представить в виде схемы.

генетический код является универсальным так как. ege biologiya 012 5. генетический код является универсальным так как фото. генетический код является универсальным так как-ege biologiya 012 5. картинка генетический код является универсальным так как. картинка ege biologiya 012 5. Дезоксирибонуклеи́новая кислота́ (ДНК) представляет собой полимерную молекулу сложной структуры длиной от нескольких тысяч пар нуклеотидов (пн) до нескольких миллионов пар нуклеотидов.

Таким образом, биосинтез белка – это один из видов пластического обмена, в ходе которого наследственная информация, закодированная в генах ДНК, реализуется в определенную последовательность аминокислот в белковых молекулах.

В результате активирования аминокислота становится более лабильной и под действием того же фермента связывается с т-РНК. Каждой аминокислоте соответствует строго специфическая т-РНК, которая находит «свою» аминокислоту и переносит ее в рибосому.

Следовательно, в рибосому поступают различные активированные аминокислоты, соединенные со своими т-РНК. Рибосома представляет собой как бы конвейер для сборки цепочки белка из поступающих в него различных аминокислот.

Одновременно с т-РНК, на которой «сидит» своя аминокислота, в рибосому поступает «сигнал» от ДНК, которая содержится в ядре. В соответствии с этим сигналом в рибосоме синтезируется тот или иной белок.

Направляющее влияние ДНК на синтез белка осуществляется не непосредственно, а с помощью особого посредника – матричной или информационной РНК (м-РНК или и-РНК), которая синтезируется в ядре под влиянием ДНК, поэтому ее состав отражает состав ДНК. Молекула РНК представляет собой как бы слепок с формы ДНК. Синтезированная и-РНК поступает в рибосому и как бы передает этой структуре план — в каком порядке должны соединяться друг с другом поступившие в рибосому активированные аминокислоты, чтобы синтезировался определенный белок. Иначе, генетическая информация, закодированная в ДНК, передается на и- РНК и далее на белок.

Молекула и-РНК поступает в рибосому и прошивает ее. Тот ее отрезок, который находится в данный момент в рибосоме, определенный кодоном (триплет), взаимо-действует совершенно специфично с подходящим к нему по строению триплетом (антикодоном) в транспортной РНК, которая принесла в рибосому аминокислоту.

Транспортная РНК со своей аминокислотой подходит к определенному кодону и-РНК и соединяется с ним; к следующему, соседнему участку и- РНК присоединяется другая т-РНК с другой аминокислотой и так до тех пор, пока не будет считана вся цепочка и-РНК, пока не нанижутся все аминокислоты в соответствующем порядке, образуя молекулу белка. А т-РНК, которая доставила аминокислоту к определенному участку полипептидной цепи, освобождается от своей аминокислоты и выходит из рибосомы.

Затем снова в цитоплазме к ней может присоединиться нужная аминокислота, и она снова перенесет ее в рибосому. В процессе синтеза белка участвует одновременно не одна, а несколько рибосом — полирибосомы.

Основные этапы передачи генетической информации:

Этапы универсальны для всех живых существ, но временные и пространственные взаимоотношения этих процессов различаются у про- и эукариотов.

У прокариот транскрипция и трансляция могут осуществляться одновременно, поскольку ДНК находится в цитоплазме. У эукариот транскрипция и трансляция строго разделены в пространстве и времени: синтез различных РНК происходит в ядре, после чего молекулы РНК должны покинуть пределы ядра, пройдя через ядерную мембрану. Затем в цитоплазме РНК транспортируются к месту синтеза белка.

Источник

Биосинтез белка. Генетический код

Наследственная информация – это информация о строении белка (информация о том, какие аминокислоты в каком порядке соединять при синтезе первичной структуры белка).

Информация о строении белков закодирована в ДНК, которая у эукариот входит в состав хромосом и находится в ядре. Участок ДНК (хромосомы), в котором закодирована информация об одном белке, называется ген.

Транскрипция – это переписывание информации с ДНК на иРНК (информационную РНК). иРНК переносит информацию из ядра в цитоплазму, к месту синтеза белка (к рибосоме).

Трансляция – это процесс биосинтеза белка. Внутри рибосомы к кодонам иРНК по принципу комплементарности присоединяются антикодоны тРНК. Рибосома пептидной связью соединяет между собой аминокислоты, принесенные тРНК, получается белок.

Реакции транскрипции, трансляции, а так же репликации (удвоения ДНК) являются реакциями матричного синтеза. ДНК служит матрицей для синтеза иРНК, иРНК служит матрицей для синтеза белка.

Генетический код – это способ, с помощью которого информация о строении белка записана в ДНК.

Свойства генкода

1) Триплетность: одна аминокислота кодируется тремя нуклеотидами. Эти 3 нуклеотида в ДНК называются триплет, в иРНК – кодон, в тРНК – антикодон (но в ЕГЭ может быть и «кодовый триплет» и т.п.)

2) Избыточность (вырожденность): аминокислот всего 20, а триплетов, кодирующих аминокислоты – 61, поэтому каждая аминокислота кодируется несколькими триплетами.

3) Однозначность: каждый триплет (кодон) кодирует только одну аминокислоту.

4) Универсальность: генетический код одинаков для всех живых организмов на Земле.

Задачи

Задачи на количество нуклеотидов/аминокислот
3 нуклеотида = 1 триплет = 1 аминокислота = 1 тРНК

Задачи на АТГЦ
ДНК иРНК тРНК
А У А
Т А У
Г Ц Г
Ц Г Ц

Еще можно почитать

Тесты и задания

Выберите один, наиболее правильный вариант. иРНК является копией
1) одного гена или группы генов
2) цепи молекулы белка
3) одной молекулы белка
4) части плазматической мембраны

Выберите один, наиболее правильный вариант. Первичная структура молекулы белка, заданная последовательностью нуклеотидов иРНК, формируется в процессе
1) трансляции
2) транскрипции
3) редупликации
4) денатурации

Выберите один, наиболее правильный вариант. Синтез гемоглобина в клетке контролирует определенный отрезок молекулы ДНК, который называют
1) кодоном
2) триплетом
3) генетическим кодом
4) геном

Выберите один, наиболее правильный вариант. Одной и той же аминокислоте соответствует антикодон ЦАА на транспортной РНК и триплет на ДНК
1) ЦАА
2) ЦУУ
3) ГТТ
4) ГАА

Выберите один, наиболее правильный вариант. Антикодону ААУ на транспортной РНК соответствует триплет на ДНК
1) ТТА
2) ААТ
3) ААА
4) ТТТ

Выберите один, наиболее правильный вариант. Каждая аминокислота в клетке кодируется
1) одной молекулой ДНК
2) несколькими триплетами
3) несколькими генами
4) одним нуклеотидом

Выберите один, наиболее правильный вариант. Функциональная единица генетического кода
1) нуклеотид
2) триплет
3) аминокислота
4) тРНК

Выберите один, наиболее правильный вариант. Какой антикодон транспортной РНК соответствует триплету ТГА в молекуле ДНК
1) АЦУ
2) ЦУГ
3) УГА
4) АГА

Выберите один, наиболее правильный вариант. Генетический код является универсальным, так как
1) каждая аминокислота кодируется тройкой нуклеотидов
2) место аминокислоты в молекуле белка определяют разные триплеты
3) он един для всех живущих на Земле существ
4) несколько триплетов кодируют одну аминокислоту

Выберите один, наиболее правильный вариант. Участок ДНК, содержащий информацию об одной полипептидной цепи, называют
1) хромосомой
2) триплетом
3) геном
4) кодом

Выберите один, наиболее правильный вариант. Матрицей для трансляции служит молекула
1) тРНК
2) ДНК
3) рРНК
4) иРНК

ТРАНСКРИПЦИЯ
Все перечисленные ниже признаки, кроме двух, можно использовать для описания транскрипции у эукариот. Определите два признака, «выпадающих» из общего списка, и запишите цифры, под которыми они указаны.

1) образование полинуклеотидной цепи
2) удвоение молекулы ДНК
3) матрицей служит молекула ДНК
4) соединяются нуклеотиды, содержащие дезоксирибозу
5) происходит в ядре

2. Установите соответствие между характеристиками и процессами: 1) транскрипция, 2) трансляция. Запишите цифры 1 и 2 в порядке, соответствующем буквам.
А) синтезируется три вида РНК
Б) происходит с помощью рибосом
В) образуется пептидная связь между мономерами
Г) у эукариот происходит в ядре
Д) в качестве матрицы используется ДНК
Е) осуществляется ферментом РНК-полимеразой

2. Установите соответствие между характеристиками и реакциями матричного синтеза: 1) репликация, 2) транскрипция, 3) трансляция. Запишите цифры 1-3 в порядке, соответствующем буквам.
А) работа фермента РНК-полимераза
Б) образование полисомы
В) синтез всех видов РНК
Г) работа фермента ДНК-полимераза
Д) рост полипептидной цепи

ТРАНСЛЯЦИЯ КРОМЕ
1. Все перечисленные ниже понятия, кроме двух, используются для описания трансляции. Определите два признака, «выпадающие» из общего списка, и запишите цифры, под которыми они указаны.

1) матричный синтез
2) митотическое веретено
3) полисома
4) пептидная связь
5) высшие жирные кислоты

2. Все перечисленные ниже термины, кроме двух, используются для описания процесса трансляции. Определите два термина, «выпадающих» из общего списка, и запишите в таблицу цифры, под которыми они указаны.
1) кодон
2) триплет
3) фотолиз
4) репликация
5) матрица

БИОСИНТЕЗ
Выберите три варианта. Биосинтез белка, в отличие от фотосинтеза, происходит

1) в хлоропластах
2) в митохондриях
3) в реакциях пластического обмена
4) в реакциях матричного типа
5) в лизосомах
6) в лейкопластах

БИОСИНТЕЗ ПОСЛЕДОВАТЕЛЬНОСТЬ
1. Определите последовательность процессов, обеспечивающих биосинтез белка. Запишите соответствующую последовательность цифр.

1) образование пептидных связей между аминокислотами
2) присоединение антикодона тРНК к комплементарному кодону иРНК
3) синтез молекул иРНК на ДНК
4) перемещение иРНК в цитоплазме и ее расположение на рибосоме
5) доставка с помощью тРНК аминокислот к рибосоме

2. Установите последовательность процессов биосинтеза белка в клетке. Запишите соответствующую последовательность цифр.
1) образование пептидной связи между аминокислотами
2) взаимодействие кодона иРНК и антикодона тРНК
3) выход тРНК из рибосомы
4) соединение иРНК с рибосомой
5) выход иРНК из ядра в цитоплазму
6) синтез иРНК

3. Установите последовательность процессов в биосинтезе белка. Запишите соответствующую последовательность цифр.
1) синтез иРНК на ДНК
2) доставка аминокислоты к рибосоме
3) образование пептидной связи между аминокислотами
4) присоединение аминокислоты к тРНК
5) соединение иРНК с двумя субъединицами рибосомы

4. Установите последовательность этапов биосинтеза белка. Запишите соответствующую последовательность цифр.
1) отделение молекулы белка от рибосомы
2) присоединение тРНК к стартовому кодону
3) транскрипция
4) удлинение полипептидной цепи
5) выход мРНК из ядра в цитоплазму

5. Установите правильную последовательность процессов биосинтеза белка. Запишите соответствующую последовательность цифр.
1) присоединение аминокислоты к пептиду
2) синтез иРНК на ДНК
3) узнавание кодоном антикодона
4) объединение иРНК с рибосомой
5) выход иРНК в цитоплазму

БИОСИНТЕЗ КРОМЕ
1. Все приведённые ниже признаки, кроме двух, можно использовать для описания процесса биосинтеза белка в клетке. Определите два признака, «выпадающих» из общего списка, и запишите в ответ цифры, под которыми они указаны.

1) Процесс происходит при наличии ферментов.
2) Центральная роль в процессе принадлежит молекулам РНК.
3) Процесс сопровождается синтезом АТФ.
4) Мономерами для образования молекул служат аминокислоты.
5) Сборка молекул белков осуществляется в лизосомах.

2. Все перечисленные ниже признаки, кроме двух, используют для описания процессов, необходимых для синтеза полипептидной цепи. Определите два признака, «выпадающих» из общего списка, и запишите цифры, под которыми они указаны.
1) транскрипция информационной РНК в ядре
2) транспорт аминокислот из цитоплазмы на рибосому
3) репликация ДНК
4) образование пировиноградной кислоты
5) соединение аминокислот

МАТРИЧНЫЕ
Выберите три варианта. В результате реакций матричного типа синтезируются молекулы

1) полисахаридов
2) ДНК
3) моносахаридов
4) иРНК
5) липидов
6) белка

В каких из перечисленных органоидов клетки происходят реакции матричного синтеза? Определите три верных утверждения из общего списка, и запишите цифры, под которыми они указаны.
1) центриоли
2) лизосомы
3) аппарат Гольджи
4) рибосомы
5) митохондрии
6) хлоропласты

Выберите из перечисленных ниже реакций две, относящихся к реакциям матричного синтеза. Запишите цифры, под которыми они указаны.
1) синтез целлюлозы
2) синтез АТФ
3) биосинтез белка
4) окисление глюкозы
5) репликация ДНК

ГЕНЕТИЧЕСКИЙ КОД
1. Выберите три верных ответа из шести и запишите цифры, под которыми они указаны. К каким последствиям приведёт замена одного нуклеотида на другой в последовательности иРНК, кодирующей белок?

1) В белке обязательно произойдёт замена одной аминокислоты на другую.
2) Произойдёт замена нескольких аминокислот.
3) Может произойти замена одной аминокислоты на другую.
4) Синтез белка в этой точке может прерваться.
5) Аминокислотная последовательность белка может остаться прежней.
6) Синтез белка в этой точке всегда прерывается.

2. Выберите три верных ответа из шести и запишите цифры, под которыми они указаны. Укажите свойства генетического кода.
1) Код универсален только для эукариотических клеток.
2) Код универсален для эукариотических клеток, бактерий и вирусов.
3) Один триплет кодирует последовательность аминокислот в молекуле белка.
4) Код вырожден, так как одна аминокислота может кодироваться несколькими кодонами.
5) 20 аминокислот кодируются 61 кодоном.
6) Код прерывается, так как между кодонами есть промежутки.

2. Сколько нуклеотидов содержит м-РНК, если синтезированный по ней белок состоит из 180 аминокислотных остатков? В ответе запишите только соответствующее число.

3. Сколько нуклеотидов содержит м-РНК, если синтезированный по ней белок состоит из 250 аминокислотных остатков? В ответе запишите только соответствующее число.

4. Белок состоит из 220 аминокислотных звеньев (остатков). Установите число нуклеотидов участка молекулы иРНК, кодирующей данный белок. В ответе запишите только соответствующее число.

2. Белок состоит из 180 аминокислотных остатков. Сколько нуклеотидов в гене, в котором закодирована последовательность аминокислот в этом белке. В ответе запишите только соответствующее число.

3. Фрагмент молекулы ДНК кодирует 36 аминокислот. Сколько нуклеотидов содержит этот фрагмент молекулы ДНК? В ответе запишите соответствующее число.

4. Сколько нуклеотидов в участке гена кодируют фрагмент белка из 25 аминокислотных остатков? В ответ запишите только соответствующее число.

5. Сколько нуклеотидов во фрагменте матричной цепи ДНК кодируют 55 аминокислот во фрагменте полипептида? В ответе запишите только соответствующее число.

2. Фрагмент молекулы белка состоит из 25 аминокислот. Сколько молекул тРНК участвовали в его создании? В ответе запишите только соответствующее число.

3. Какое количество молекул транспортных РНК участвовали в трансляции, если участок гена содержит 300 нуклеотидных остатков? В ответе запишите только соответствующее число.

4. Белок состоит из 220 аминокислотных звеньев (остатков). Установите число молекул тРНК, необходимых для переноса аминокислот к месту синтеза белка. В ответе запишите только соответствующее число.

5. Сколько молекул тРНК доставляют на рибосому 30 аминокислот для синтеза белка? В ответе запишите только соответствующее число.

2. Сколько триплетов кодирует 32 аминокислоты? В ответ запишите только соответствующее число.

3. Сколько триплетов участвует в синтезе белка, состоящего из 510 аминокислот? В ответе запишите только количество триплетов.

4. Сколько триплетов в молекуле иРНК кодируют белок, состоящий из 102 аминокислот? В ответе запишите только соответствующее число.

2. Ген состоит из 900 нуклеотидов. Сколько аминокислот кодирует этот ген, сколько транспортных РНК будет участвовать в синтезе белка на этом гене? Запишите два числа в порядке, указанном в задании, без разделителей (пробелов, запятых и т.п.).

3. Какое число аминокислот в белке, если его кодирующий ген состоит из 600 нуклеотидов? В ответ запишите только соответствующее число.

4. Сколько аминокислот кодирует 1203 нуклеотида? В ответ запишите только количество аминокислот.

5. Сколько аминокислот необходимо для синтеза полипептида, если кодирующая его часть иРНК содержит 108 нуклеотидов? В ответе запишите только соответствующее число.

СЛОЖНО
Белок имеет относительную молекулярную массу 6000. Определите количество аминокислот в молекуле белка, если относительная молекулярная масса одного аминокислотного остатка 120. В ответе запишите только соответствующее число.

В двух цепях молекулы ДНК насчитывается 3000 нуклеотидов. Информация о структуре белка кодируется на одной из цепей. Подсчитайте сколько закодировано аминокислот на одной цепи ДНК. В ответ запишите только соответствующее количеству аминокислот число.

При транскрипции гена была синтезирована иРНК длиной 680 нуклеотидов. Затем из неё были вырезаны три интрона (некодирующих участка) по 82, 114 и 127 нуклеотидов. Сколько аминокислот будет содержать белок, полученный при трансляции этой иРНК? В ответ запишите только количество аминокислот.

АМИНОКИСЛОТ-НУКЛЕОТИДОВ-ТРИПЛЕТОВ
В процессе трансляции молекулы гормона окситоцина участвовало 9 молекул тРНК. Определите число аминокислот, входящих в состав синтезируемого белка, а также число триплетов и нуклеотидов, которые кодируют этот белок. Запишите числа в порядке, указанном в задании, без разделителей (пробелов, запятых и т.п.).

АМИНОКИСЛОТ-НУКЛЕОТИДОВ-ТРНК
Участок молекулы ДНК содержит 10 триплетов. Сколько аминокислот зашифровано в этом участке? Сколько потребуется нуклеотидов информационной РНК и сколько потребуется транспортных РНК для синтеза участка молекулы белка, состоящего из этих аминокислот? Запишите числа в порядке, указанном в задании, без разделителей (пробелов, запятых и т.п.).

НУКЛЕОТИДОВ-НУКЛЕОТИДОВ-ТРНК
Белок состоит из 240 аминокислот. Установите число нуклеотидов иРНК и число нуклеотидов ДНК, кодирующих данные аминокислоты, а также общее число молекул тРНК, которые необходимы для переноса этих аминокислот к месту синтеза белка. Запишите три числа в порядке, указанном в задании, без разделителей (пробелов, запятых и т.п.).

НУКЛЕОТИДОВ-ТРИПЛЕТОВ-ТРНК
Участок молекулы белка содержит 3 аминокислоты. Сколько потребовалось нуклеотидов иРНК, триплетов иРНК и транспортных РНК для синтеза этого участка? Запишите числа в порядке, указанном в задании, без разделителей (пробелов, запятых и т.п.).

Сколько нуклеотидов составляют один стоп-кодон иРНК, сколько стоп-кодонов в генетическом коде? Запишите два числа в порядке, указанном в задании, без разделителей (пробелов, запятых и т.п.).

Сколько нуклеотидов составляют антикодон тРНК, кодон иРНК, триплет ДНК? Запишите три числа в порядке, указанном в задании, без разделителей (пробелов, запятых и т.п.).

генетический код является универсальным так как. 0858. генетический код является универсальным так как фото. генетический код является универсальным так как-0858. картинка генетический код является универсальным так как. картинка 0858. Дезоксирибонуклеи́новая кислота́ (ДНК) представляет собой полимерную молекулу сложной структуры длиной от нескольких тысяч пар нуклеотидов (пн) до нескольких миллионов пар нуклеотидов.
Рассмотрите рисунок с изображением процессов, протекающих в клетке, и укажите А) название процесса, обозначенного буквой А, Б) название процесса, обозначенного буквой Б, В) название типа химических реакций. Для каждой буквы выберите соответствующий термин из предложенного списка.
1) репликация
2) транскрипция
3) трансляция
4) денатурация
5) реакции экзотермические
6) реакции замещения
7) реакции матричного синтеза
8) реакции расщепления

генетический код является универсальным так как. 18039. генетический код является универсальным так как фото. генетический код является универсальным так как-18039. картинка генетический код является универсальным так как. картинка 18039. Дезоксирибонуклеи́новая кислота́ (ДНК) представляет собой полимерную молекулу сложной структуры длиной от нескольких тысяч пар нуклеотидов (пн) до нескольких миллионов пар нуклеотидов.
Рассмотрите рисунок и укажите (А) название процесса 1, (Б) название процесса 2, (в) конечный продукт процесса 2. Для каждой буквы выберите соответствующий термин или соответствующее понятие из предложенного списка.
1) тРНК
2) полипептид
3) рибосома
4) репликация
5) трансляция
6) конъюгация
7) АТФ
8) транскрипция

генетический код является универсальным так как. 6033. генетический код является универсальным так как фото. генетический код является универсальным так как-6033. картинка генетический код является универсальным так как. картинка 6033. Дезоксирибонуклеи́новая кислота́ (ДНК) представляет собой полимерную молекулу сложной структуры длиной от нескольких тысяч пар нуклеотидов (пн) до нескольких миллионов пар нуклеотидов.
Все перечисленные ниже признаки, кроме двух, используются для описания изображенного на рисунке процесса. Определите два признака, «выпадающих» из общего списка, и запишите цифры, под которыми они указаны.
1) по принципу комплементарности последовательность нуклеотидов молекулы ДНК переводится в последовательность нуклеотидов молекул различных видов РНК
2) процесс перевода последовательности нуклеотидов в последовательность аминокислот
3) процесс переноса генетической информации из ядра к месту синтеза белка
4) процесс происходит в рибосомах
5) результат процесса – синтез РНК

Молекулярная масса полипептида составляет 30000 у.е. Определите длину кодирующего его гена, если молекулярная масса одной аминокислоты в среднем равна 100, а расстояние между нуклеотидами в ДНК составляет 0,34 нм. В ответе запишите только соответствующее число.

Установите соответствие между функциями и структурами, участвующими в биосинтезе белка: 1) ген, 2) рибосома, 3) тРНК. Запишите цифры 1-3 в порядке, соответствующем буквам.
А) транспортирует аминокислоты
Б) кодирует наследственную информацию
В) участвует в процессе транскрипции
Г) образуют полисомы
Д) место синтеза белка

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *