jupiter notebook не выполняется код
Jupyter notebook not running code. Stuck on In [*]
My code was running fine before I did not change anything and I ran it again. Now it doesn’t return anything not even an error. It is just stuck on «In [*]».
17 Answers 17
This means that Jupyter is still running the kernel. It is possible that you are running an infinite loop within the kernel and that is why it can’t complete the execution.
Try manually stopping the kernel by pressing the stop button at the top. If that doesn’t work, interrupt it and restart it by going to the «Kernel» menu. This should disconnect it.
Otherwise, I would recommend closing and reopening the notebook. The problem may also be with your code.
updating ipykernel did it for me. it seems arch linux’s ipykernel package had been outdated for some time
I have installed jupyter with command pip3 install jupyter and have the same problem. when instead I used the command pip3 install jupyter ipython the problem was fixed.
The answers that state that your kernel is still executing the code in the cell are correct. You can see that by the small circle in the top right. If it is filled with a black/grey color, then it means it is still running.
I just want to add that I experienced a problem in JupyterHub where the code in the cell would just not execute. I stopped and restarted the kernel, shutdown and reloaded the notebook, but it still did not run.
What worked for me was literally copy pasting the same code to a new cell and deleting the old one. It then ran from the new cell.
This is mean your program is still running in background, you need to click shutdown (Shown in attached Image).
*** Shutdown the Running cell and again run your program.
I fixed this issue
It will show you the path then copy and paste on Jupyter Notebook browser
The code will be executed in IPython Notebook Python 3
Usually, stopping and restarting that particular cell fixes this issue.
Особенности Jupyter Notebook, о которых вы (может быть) не слышали
Jupyter Notebook – это крайне удобный инструмент для создания красивых аналитических отчетов, так как он позволяет хранить вместе код, изображения, комментарии, формулы и графики:
Ниже мы расскажем о некоторых фишках, которые делают Jupyter очень крутым. О них можно прочитать и в других местах, но если специально не задаваться этим вопросом, то никогда и не прочитаешь.
Jupyter поддерживает множество языков программирования и может быть легко запущен на любом сервере, необходим только доступ по ssh или http. К тому же это свободное ПО.
Основы
Список хоткеев вы найдете в Help > Keyboard Shortcuts (список периодически дополняется, так что не стесняйтесь заглядывать туда снова).
Отсюда можно получить представление о взаимодействии с блокнотом (notebook). Если вы будете постоянно работать c Jupyter, большинство комбинаций вы быстро выучите.
Экспорт блокнота
Простейший способ — сохранить блокнот в формате IPython Notebook (.ipynb), но так как их используют не все, есть и другие варианты:
Построение графиков
Есть несколько вариантов построения графиков:
Magic-команды
Магические команды (magics) превращают обычный python в магический python. Magic-команды — это ключ к могуществу IPython’а.
Можно управлять переменными среды для вашего блокнота без перезапуска Jupyter-сервера. Некоторые библиотеки (такие, как theano) используют переменные среды, чтобы контролировать поведение, и %env — самый удобный способ.
Выполнение shell-команд
В Notebook можно вызвать любую shell-команду. Это особенно удобно для управления виртуальной средой.
Подавление вывода последней строки
Иногда вывод не нужен, и в этом случае можно или использовать команду pass с новой строки, или поставить точку запятой в конце строки:
вызовет следующее всплывающее окно:
Используйте %run для выполнения кода на Python
Но эта команда может выполнять и другие блокноты из Jupyter! Иногда это очень полезно.
Обратите внимание, что %run — это не то же, что импорт python-модуля.
Загрузит код напрямую в ячейку. Можно выбрать файл локально или из сети.
Если раскомментировать и выполнить код ниже, содержание ячейки заменится на содержание файла.
%store — ленивая передача данных между блокнотами
%who для анализа переменных глобального пространства имен
Тайминг
Если вы хотите замерить время выполнения программы или найти узкое место в коде, на помощь придет IPython.
Профилирование: %prun, %lprun, %mprun
%lprun позволяет профилировать с точностью до строк кода, но, кажется, в последнем релизе Python он не работает, так что в этот раз обойдемся без магии:
Дебаг с помощью %debug
У Jupyter есть собственный интерфейс для ipdb, что позволяет зайти внутрь функции и посмотреть, что в ней происходит.
Это не PyCharm — потребуется время, чтобы освоить, но при необходимости дебага на сервере это может быть единственным вариантом (кроме pdb через терминал).
Немного более простой способ — команда %pdb, которая активирует дебаггер, когда выбрасывается исключение:
Запись формул в LateX
Маркдаун ячейки могут отрисовывать формулы LateX с помощью MathJax.
Маркдаун — важная часть блокнотов, так что не забывайте использовать его выразительные возможности!
Использование разных языков внутри одного блокнота
Если вы соскучились по другим языкам программирования, можете использовать их в Jupyter Notebook:
Анализ Big Data
Существует несколько решений, чтобы запрашивать/обрабатывать большие объемы данных:
Ваши коллеги могут экспериментировать с вашим кодом, ничего не устанавливая
Такие сервисы, как mybinder, предоставляют доступ к Jupiter Notebook со всеми установленными библиотеками, так что пользователь может с полчаса поиграться с вашим кодом, имея под рукой только браузер.
Вы также можете установить вашу собственную системы с помощью jupyterhub, что очень удобно, если вы проводите мини-курс или мастер-класс и вам некогда думать о машинах для студентов.
Написание функций на других языках
Иногда скорости NumPy бывает недостаточно, и мне необходимо написать немного быстрого кода. В принципе, можно собрать нужные функции в динамические библиотеки, а затем написать обертку на Python…
Но гораздо лучше, когда скучная часть работы сделана за нас, правда?
Ведь можно написать нужные функции на Cython или Fortran и использовать их напрямую из кода на Python.
Для начала нужно установить модули
Лично я предпочитаю Fortran, на котором, я считаю, удобно писать функции для обработки большого объема численных данных. Подробнее о его использовании можно почитать здесь.
Должен заметить, что есть и другие способы ускорить ваш код на Python. Примеры можно найти в моем блокноте.
Множественный курсор
С недавнего времени Jupyter поддерживает множественный курсор, такой, как в Sublime или IntelliJ!
Источник: swanintelligence.com/multi-cursor-in-jupyter.html
Расширения Jupyter-contrib
устанавливаются с помощью
Это целое семейство различных расширений, включая, например, jupyter spell-checker и code-formatter, которых по умолчанию в Jupyter нет.
RISE: презентации в Notebook
Расширение, написанное Damian Avila, позволяет демонстрировать блокноты как презентации. Пример такой презентации: bollwyvl.github.io/live_reveal/#/7
Это может пригодиться, если вы обучаете использованию какой-либо библиотеки.
Система вывода Jupyter
Блокноты отображаются в HTML, и вывод ячейки тоже может быть в формате HTML, так что вы можете выводить все, что душе угодно: видео, аудио, изображения.
В этом примере я просматриваю содержимое директории с картинками в моем репозитории и отображаю первые пять из них.
Я мог бы получить тот же список bash-командой,
потому что magic-команды и bash-вызовы возвращают переменные Python:
Повторное подключение к ядру
Давным давно, если вы запускали какой-нибудь долгий процесс и в какой-то момент подключение к серверу IPython прерывалось, вы полностью теряли возможность отслеживать процесс вычислений (если только вы не записывали эти данные в файл). Приходилось или прерывать работу ядра с риском потерять некоторые результаты, или ждать окончания процесса, не имея представления о том, что в данный момент происходит.
Теперь опция Reconnect to kernel позволяет заново подключиться к работающему ядру, не прерывая вычислений, и увидеть последний вывод (хотя какая-то часть вывода все же будет потеряна).
Пишите ваши посты в Notebook
такие, как этот. Используйте nbconvert, чтобы экспортировать в HTML.
Руководство по Jupyter Notebook для начинающих
Jupyter Notebook — это мощный инструмент для разработки и представления проектов Data Science в интерактивном виде. Он объединяет код и вывод все в виде одного документа, содержащего текст, математические уравнения и визуализации.
Такой пошаговый подход обеспечивает быстрый, последовательный процесс разработки, поскольку вывод для каждого блока показывается сразу же. Именно поэтому инструмент стал настолько популярным в среде Data Science за последнее время. Большая часть Kaggle Kernels (работы участников конкурсов на платформе Kaggle) сегодня созданы с помощью Jupyter Notebook.
Этот материал предназначен для новичков, которые только знакомятся с Jupyter Notebook, и охватывает все этапы работы с ним: установку, азы использования и процесс создания интерактивного проекта Data Science.
Настройка Jupyter Notebook
Чтобы начать работать с Jupyter Notebook, библиотеку Jupyter необходимо установить для Python. Проще всего это сделать с помощью pip:
Теперь нужно разобраться с тем, как пользоваться библиотекой. С помощью команды cd в командной строке (в Linux и Mac) в первую очередь нужно переместиться в папку, в которой вы планируете работать. Затем запустите Jupyter с помощью следующей команды:
Это запустит сервер Jupyter, а браузер откроет новую вкладку со следующим URL: https://localhost:8888/tree. Она будет выглядеть приблизительно вот так:
Отлично. Сервер Jupyter работает. Теперь пришло время создать первый notebook и заполнять его кодом.
Основы Jupyter Notebook
Для создания notebook выберите «New» в верхнем меню, а потом «Python 3». Теперь страница в браузере будет выглядеть вот так:
Теперь напишем какой-нибудь код!
Вывод должен отобразиться прямо в notebook. Это и позволяет заниматься программированием в интерактивном формате, имея возможность отслеживать вывод каждого шага.
Если есть несколько ячеек, то между ними можно делиться переменными и импортами. Это позволяет проще разбивать весь код на связанные блоки, не создавая переменную каждый раз. Главное убедиться в запуске ячеек в правильном порядке, чтобы переменные не использовались до того, как были созданы.
Добавление описания к notebook
В Jupyter Notebook есть несколько инструментов, используемых для добавления описания. С их помощью можно не только оставлять комментарии, но также добавлять заголовки, списки и форматировать текст. Это делается с помощью Markdown.
Первым делом нужно поменять тип ячейки. Нажмите на выпадающее меню с текстом «Code» и выберите «Markdown». Это поменяет тип ячейки.
Интерактивная наука о данных
Соорудим простой пример проекта Data Science. Этот notebook и код взяты из реального проекта.
Также обратите внимание на то, как переменные из предыдущих ячеек, содержащие данные из CSV-файла, используются в последующих ячейках в том случае, если по отношению к первым была нажата кнопка «Run».
Это простейший способ создания интерактивного проекта Data Science!
На сервере Jupyter есть несколько меню, с помощью которых от проекта можно получить максимум. С их помощью можно взаимодействовать с notebook, читать документацию популярных библиотек Python и экспортировать проект для последующей демонстрации.
Редактировать (Edit): используется, чтобы вырезать, копировать и вставлять код. Здесь же можно поменять порядок ячеек, что понадобится для демонстрации проекта.
Вставить (Insert): для добавления ячеек перед или после выбранной.
Ячейка (Cell): отсюда можно запускать ячейки в определенном порядке или менять их тип.
Помощь (Help): в этом разделе можно получить доступ к важной документации. Здесь же упоминаются горячие клавиши для ускорения процесса работы. Наконец, тут можно найти ссылки на документацию для самых важных библиотек Python: Numpy, Scipy, Matplotlib и Pandas.
NeilAlishev / Instruction.md
Это очень частая проблема, которая появляется на некоторых ОС. Дело в том, что среда разработки запустилась, но браузер не открылся автоматически.
Как решить эту проблему?
В первую очередь, попробуйте запустить Anaconda Navigator с правами администратора (правой кнопкой мыши нажать на иконку Anaconda Navigator, во всплывающем меню выбрать «Запуск от имени администратора»). Теперь, запустите Jupyter Notebook.
Если все равно не открывается окно браузера, выполните инструкции описанные далее.
Запустите программу, которая называется CMD.exe Prompt (может также называться Anaconda Prompt), нажав на Launch. Эта программа находится тут же, в Anaconda Navigator, рядом с программой Jupyter Notebook. После нажатия на Launch, должна открыться командная строка. Если этой программы нет в Anaconda Navigator, можно найти программу «Anaconda Prompt» на компьютере с помощью обычного поиска по программам.
Вышеупомянутая команда показывает тот адрес, по которому мы сможем получить доступ к нашей среде разработки. Адрес имеет вид: http://localhost:8888/?token=СЛУЧАЙНАЯ_ПОСЛЕДОВАТЕЛЬНОСТЬ_БУКВ_И_ЦИФР
Вам необходимо скопировать этот адрес, вставить его в адресную строку вашего браузера и перейти на эту страницу. После этого откроется среда разработки Jupyter Notebook. Можно работать.
ОС Linux или Mac OS: Надо просто открыть терминал и там написать jupyter notebook Полученный адрес надо скопировать в адресную строку браузера.
Русские Блоги
Ядро Jupyter Notebook не может запустить / перезапустить
Ошибка ядра Win10 Jupyter Notebook или проблемы с запуском
Описание проблемы Jupyter Notebook
Моя операционная среда
[ √ ] Следует отметить, что моя установка на python под win10 установлена напрямую, а не в среде anaconda.
Описание проблемы
Предварительные условия: среда Python зависит от успешной установки!
В Windows 10 работает терминал cmd
Или, щелкнув параметр перезагрузки под параметром ядра, всегда не запускается нормально.
Решение для запроса
Перечисленные решения бесполезны для меня и могут быть полезны только для справки!
Способ 1
Согласно методу модификации этого метода, он должен быть изменен как:
Тем не менее, я не вносил никаких изменений после модификации, и проблема все еще существует, и файл kernel.jason был проверен после нормальной работы. Никаких изменений не было, поэтому предполагается, что у этого блоггера была проблема во время процесса установки и настройки python, или было много Версия Python, поэтому вам нужно указать путь к Python в блокноте jupyter!
Способ 2
Способ 3
Полный метод, предоставляемый github:
Мое решение
Я не заметил эту строку в начале. Если вы видите ее здесь, вы можете попытаться увидеть, какая ошибка отображается в вашем терминале cmd, вместо того, чтобы копировать и вставлять код выполнения в соответствии с онлайн-поговоркой.
Мой блокнот jupyter всегда запускается, чтобы показать, что запуск или перезапуск ядра недопустим. Именно из-за этой проблемы решение здесь:
Решение проблемы с Prompt_toolkit на github
Проблема в том, что prompt_toolkit не установлен, так что установите его, просто установите git под cmd:
После того, как установка все еще проблематична, продолжите установку:
После установки этих двух приложений запуск ноутбука jupyter оказался простым: похоже, это не проблема ядра, но ваша компьютерная среда не полностью установлена.