как программировать на машинном коде

Как программировать на машинном коде

Интерпретатор переводит Вашу программу с языка высокого уровня (например, БЕЙСИКа) в машинный код последовательно строку за строкой. Он работает примерно так: прочитал строку, проверил, нет ли в ней ошибок, перевел ее в машинный код, выполнил команды машинного кода, запомнил, где нужно результат и перешел к следующей строке. Чтобы сделать, например, операцию

интерпретатор обращается к процессору несколько сот раз. Вам этого не видно, все равно результат появится на экране через доли секунды, но это так.

Если же Вам позже придется вернуться к этой строке (например, с помощью GO TO 10), то все эти действия будут повторены.

А ведь многие операции выполняются в циклах.

Таким образом, интерпретатор работает крайне медленно. Зато имеется возможность работы в диалоговом режиме. Так, на Бейсике, когда Вы набираете программу, каждая строка сразу же и проверяется на правильность синтаксиса и, если Вы сделаете ошибку, то строка не будет введена в программу нажатием клавиши ENTER до тех пор, пока Вы эту ошибку не устраните. Вы всегда можете прервать работу программы, внести изменения и стартовать опять, причем с той строки, с какой хотите. Работать с интерпретатором БЕЙСИКа настолько удобно для начинающих, что на многих моделях персональных ЭВМ, в том числе и на «ZX-Spectrum`е», он уже «зашит» в постоянное запоминающее устройство (ПЗУ) и служит не только языком программирования, но и выполняет функции операционной системы компьютера. При включении компьютера в сеть он сразу готов к выполнению команд БЕЙСИКа.

В отличие от интерпретатора, компилятор переводит Вашу программу с языка высокого уровня (например, Паскаля или Фортрана) в машинные коды всю целиком. После того, как программа написана, она компилируется в машинный код. Программа, написанная Вами на языке, называется исходным текстом (исходным модулем, исходным блоком, исходным файлом). То, что Вы получаете в результате компиляции, называется объектным кодом (модулем). Вы можете выгрузить объектный код на ленту, а потом снова загрузить. Можете запустить его на исполнение, но здесь у Вас уже нет возможности во время работы программы ее остановить, внести изменения и снова запустить с произвольно взятого места. Если такая необходимость возникает, надо заново загрузить исходный текст программы, внести изменения, а потом опять откомпилировать его в машинный код.

Поскольку здесь компиляция выполняется для каждой строки только один раз, а потом полученный машинный код можно использовать хоть всю жизнь, то здесь скорость работы программы гораздо выше и лишь немного уступает скорости программ, сразу написанных на Ассемблере. Те все же быстрее, т.к. как бы хорош компилятор ни был, он все же не в состоянии сделать объектный код оптимальным по быстродействию и по объему занимаемой памяти.

Итак, программирование в машинном коде (на Ассемблере) позволяет повысить скорость работы программы по сравнению с работой через интерпретатор в 50…200 раз и в 1,5…3 раза по сравнению с кодом, прошедшим компиляцию. Это бывает чрезвычайно важно, если в программе есть многочисленные вложенные друг в друга циклы, если многократно выполняются поиск и выбор данных из обширных областей памяти. Много времени занимают операции, связанные с обработкой графических изображений на экране. Эффект плавного и быстрого перемещения (и изменения формы) объектов в компьютерных видеоиграх практически всегда создается программированием в машинном коде.

Сравним расход памяти при работе на БЕЙСИКе и в машинных кодах. Программа на БЕЙСИКе размером в 30 строк занимает примерно 1К памяти.

Аналогичная ей, выполняющая те же задачи, программа в машинных кодах будет иметь примерно 150 строк (команд), но занимают они всего 200…250 байтов оперативной памяти.

В нашей стране есть еще две объективные причины, вызывающие повышенный интерес к программированию в машинных кодах.

Дело в том, что наибольшее число пользователей этого класса компьютеров у нас составляют радиолюбители и специалисты по электронике, самостоятельно собравшие компьютер. Обычно они не останавливаются на достигнутом результате. А развивают свое хобби дальше, ищут пути усовершенствования машины, пути подключения дополнительных устройств: интерфейсов принтера, дисковода, джойстика, светового пера, программатора, контроллеров бытовой аппаратуры, бытовых систем, систем управления различными моделями и т.д. Вплоть до систем управления технологическими процессами промышленных предприятий. В конце 80-х годов в Душанбе на базе этого компьютера была сделана система голосования республиканского парламента. Работают под управлением «Спектрума» и очень интересные системы управления сельскохозяйственными предприятиями (фермами и птицефермами). Интересны автоматизированные системы диагностирования автомобиля, системы контроля состояния спортсменов и многое другое. Поскольку процедуры, управляющие работой всех этих устройств (их называют драйверами), обычно пишутся в машинных кодах, то их надо знать и уметь с ними работать.

Другая особенность состоит в том, что основная масса программ для Синклер-компьютеров написана в Англии на английском языке. Желание адаптировать эти программы на русский язык во многих случаях упирается в необходимость понимания структуры программы, а большинство лучших программ написано именно в машинных кодах.

«ИНФОРКОМ» получает множество писем с вопросами по поводу переделки системы загрузки фирменных программ. Мы так понимаем, что многие уже обзавелись дисководом с Бета-диск интерфейсом, и теперь перед ними стоит задача переписывания программ на диск. При этом пользоваться «магической кнопкой» они не хотят, т.к. при этом любая, даже самая короткая программа будет занимать на диске 48К, а хотят ее переписать на диск блок за блоком и сопроводить загрузчиком с диска. На все эти вопросы ответ может быть только один. Поскольку разные фирмы в своих программах применяют разные системы загрузки, универсального решения здесь не существует. К каждой программе нужен индивидуальный подход. Надо прочитать загрузчик программы, понять куда какой блок загружается и в каком порядке они стартуют, а затем, если надо, внести в него свои изменения. Поскольку лучшие программы имеют при себе загрузчик в машинных кодах (обычно он следует после БЕЙСИК-загрузчика или организован внутри него в строке после оператора REM), то умение работать с машинным кодом Вам пригодится и здесь. Вот в основном те причины, которые могут побудить Вас к освоению программирования в машинных кодах или хотя бы их пониманию (что достигается гораздо быстрее, чем способность активного программирования, но имеет не меньше значения), хотя хотелось бы отметить еще два важных, на наш взгляд, обстоятельства.

Во-первых, «Спектрум» имеет ПЗУ объемом 16К. Эта память буквально насыщена множеством очень полезных системных процедур. Все они записаны в машинных кодах. Их можно смело применять в собственных программах, обращаясь к ним по мере необходимости. Это дает колоссальный выигрыш в расходе памяти и вообще очень упрощает программирование. Поскольку все содержимое ПЗУ записано в машинном коде, умение разбираться в нем является необходимым. Для использования системных программ, содержащихся в ПЗУ, Вам необходимо ознакомиться с основами программирования в машинных кодах.

Что же касается особой трудоемкости работ по программированию в машинных кодах, то и здесь есть ряд возражений.

· Нет необходимости сразу программировать. На первом этапе Вы уже сможете многого достичь, если будете просто разбираться в программах, а дальше все придет с набором опыта.

· Существуют ассемблирующие программы, которые имеют достаточный набор средств, чтобы освободить Вас от самой рутинной работы и снизить трудоемкость программирования.

· Как правило, нет никакой необходимости всю программу писать в машинных кодах. Всегда в ней можно выделить блок, который решающим образом влияет на быстродействие. Он может быть очень маленьким по размеру. Вот его-то и надо записать в машинных кодах, а остальную часть программы оставить, например, на БЕЙСИКе. Если Вы создаете программу «русско-английский словарь», то она вполне может быть написана на БЕЙСИКе и только процедура поиска перевода слова, занимающая много времени, должна быть записана в машинных кодах. Если же Вы создаете русско-китайский словарь, то еще одним узким местом станет рисование на экране иероглифов. Вам придется записать несколько процедур, которые смогут делать это быстро. Диалог с пользователем программа может вести и из БЕЙСИКа.

· И, наконец, последнее. Ни один программист, работающий в машинных кодах, не пишет большую программу от начала и до конца с чистого листа. Программа представляет хитроумное сплетение больших и малых подпрограмм (процедур), из которых до 80% стали для этого программиста стандартными, т.е. он применяет их регулярно во всех своих программах без особых перемен, а Вы никогда об этом и не догадаетесь. Это могут быть арифметических и логических вычислений, обработки изображений, опроса внешних устройств (например, джойстика), вывода текста на экран, звуковых эффектов и т.д. и т.п.

Конечно, если Вы делаете только первые шаги в машинных кодах, то у Вас нет еще такой библиотеки, но прочитав эту книгу, Вы уже можете покопаться в машинном коде некрупных фирменных программ. Там Вы найдете множество открытий. В этом Вам очень поможет какая-либо дисассемблирующая программа, например MONITOR 16/48. Для Вас открыты и другие книги «ИНФОРКОМа» и, самое главное, наши выпуски «ZX-РЕВЮ».

Источник

Как программировать на машинном коде

Многие любители не испытывают серьезных трудностей в овладении БЕЙСИКом. Для этого достаточно немного практики. Но рано или поздно они приходят к барьеру «машинного кода». Как это ни печально, но некоторые так перед ним и останавливаются. Это ни в коей мере не связано с отсутствием желания или способностей, просто многие не знают, с чего начать. Если в БЕЙСИКе можно начинать с чего угодно (при ошибке компьютер сам Вас поправит), то здесь Вы оказываетесь с процессором один на один, и такой метод проб и ошибок не срабатывает.

Итак, давайте напишем первую программу в машинном коде. Прежде всего, выделим для нее область памяти. Если Вы читали нашу книгу «Большие возможности Вашего «ZX-Spectrum`а», то знаете, что для БЕЙСИКа в оперативной памяти компьютера отведена область памяти, начинающаяся с адреса, на который указывает системная переменная PROG и заканчивается адресом, на который указывает системная переменная RAMTOP. Предположим, что Вы хотите записать программу в машинных кодах, начиная с адреса 30000. Дайте команду CLEAR 29999. Эта команда установит RAMTOP в 29999 и Ваша программа будет защищена от возможной порчи из БЕЙСИКа. Даже если Вы дадите команду NEW, области памяти, находящиеся выше RAMTOP, не будут поражены.

Теперь дайте две прямые команды одну за другой:

Если все, что Вы здесь прочитали, Вам понятно, то Вы уже поняли, как составляются программы в машинных кодах. Можно, конечно, возразить, что пользы от такой программы не очень много, но сейчас не в этом суть. Важно, чтобы Вы поняли, что некая последовательность чисел может быть последовательностью команд для процессора Z-80.

Теперь давайте вернемся к нашей первой программе и попробуем ее несколько развить, чтобы она все же что-то делала. Процессор Z-80 имеет несколько регистров, у которых есть имена – «А», «В», «С» и т.д. Каждый из них может содержать одно какое-либо целое число от 0 до 255 (т.е. один байт).

Существуют десятки команд процессора, которые позволяют копировать содержимое регистров из одного в другой, а также выполнять связь с внешним миром, в т.ч. и с оперативной памятью.

Итак, мы уже готовы к тому, чтобы написать программу, которая будет перебрасывать какое-либо число из одного регистра процессора в другой.

Источник

Что такое ассемблер и нужно ли его изучать

Этому языку уже за 70, но на пенсию он пока не собирается.

Есть традиция начинать изучение программирования с вывода на экран строки «Hello world!». На языке Python, например, это всего одна команда:

Всё просто, понятно и красиво! Но есть язык программирования, в котором, чтобы получить тот же результат, нужно написать солидный кусок кода:

Это ассемблер. Только не нужно думать, что он плох. Просто Python — это язык высокого уровня, а ассемблер — низкого. Одна команда Python при выполнении вызывает сразу несколько операций процессора, а каждая команда ассемблера — всего одну операцию.

Сложно? Давайте разбираться.

как программировать на машинном коде. 11141029072021 11a3428e7abc9bac29137421556331dcb1a157b9. как программировать на машинном коде фото. как программировать на машинном коде-11141029072021 11a3428e7abc9bac29137421556331dcb1a157b9. картинка как программировать на машинном коде. картинка 11141029072021 11a3428e7abc9bac29137421556331dcb1a157b9. Интерпретатор переводит Вашу программу с языка высокого уровня (например, БЕЙСИКа) в машинный код последовательно строку за строкой. Он работает примерно так: прочитал строку, проверил, нет ли в ней ошибок, перевел ее в машинный код, выполнил команды машинного кода, запомнил, где нужно результат и перешел к следующей строке. Чтобы сделать, например, операцию

Программист, консультант, специалист по документированию. Легко и доступно рассказывает о сложных вещах в программировании и дизайне.

Немного о процессорах и машинном языке

Чтобы объяснить, что такое язык ассемблера, начнём с того, как вообще работает процессор и на каком языке с ним можно «разговаривать».

Процессор — это электронное устройство (сейчас крошечная микросхема, а раньше процессоры занимали целые залы), не понимающее слов и цифр. Он реагирует только на два уровня напряжения: высокий — единица, низкий — ноль. Поэтому каждая процессорная команда — это последовательность нулей и единиц: 1 — есть импульс, 0 — нет.

Для работы с процессором используется машинный язык. Он состоит из инструкций, записанных в двоичном коде. Каждая инструкция определяет одну простую машинную операцию: арифметическую над числами, логическую (поразрядную), ввода-вывода и так далее.

Например, для Intel 8088 инструкция 0000001111000011B — это операция сложения двух чисел, а 0010101111000011B — вычитания.

Программировать на машинном языке нелегко — приходится работать с огромными цепочками нулей и единиц. Трудно написать или проверить такую программу, а уж тем более разобраться в чужом коде.

Поэтому много лет назад был создан язык ассемблера, в котором коды операций обозначались буквами и сокращениями английских слов, отражающих суть команды. Например, команда mov ax, 6 означает: «переместить число 6 в ячейку памяти AX».

Когда и как был создан ассемблер?

Это произошло ещё в сороковых годах прошлого века. Ассемблер был создан для первых ЭВМ на электронных лампах, программы для которых писали на машинном языке. А так как памяти у компьютеров было мало, то команды вводили, переключая тумблеры и нажимая кнопки. Даже несложные вычисления занимали много времени.

Проблему решили, когда ЭВМ научились хранить программы в памяти. Уже в 1950 году была разработана первая программа-транслятор, которая переводила в машинный код программы, написанные на понятном человеку языке. Эту программу назвали программой-сборщиком, а язык — языком ассемблера (от англ. assembler — сборщик).

Появление ассемблера сильно облегчило жизнь программистов. Они смогли вместо двоичных кодов использовать команды, состоящие из близких к обычному языку условных обозначений. Кроме того, ассемблер позволил уменьшить размеры программ — для машин того времени это было важно.

Как устроен язык ассемблера?

Ассемблер можно считать языком второго поколения, если за первый принять машинный язык. Он работает непосредственно с процессором, и каждая его команда — это инструкция процессора, а не операционной или файловой системы. Перевод языка ассемблера в машинный код называется ассемблированием.

Коды операций в языке ассемблера мнемонические, то есть удобные для запоминания:

Регистрам и ячейкам памяти присваиваются символические имена, например:

EAX, EBX, AX, AH — имена для регистров;

meml — имя для ячейки памяти.

Например, так выглядит команда сложения чисел из регистров AX и BX:

А это команда вычитания чисел из регистров AX и BX:

Кроме инструкций, в языке ассемблера есть директивы — команды управления компилятором, то есть программой-ассемблером.

Вот некоторые из них:

Не думайте, что ассемблер — всего лишь набор инструкций процессора с удобной для программиста записью. Это полноценный язык программирования, на котором можно организовать циклы, условные переходы, процедуры и функции.

Вот, например, код, на ассемблере, выводящий на экран цифры от 1 до 10:

Здесь действие будет выполняться в цикле — как, например, в циклах for или do while в языках высокого уровня.

Единого стандарта для языков ассемблера нет. В работе с процессорами Intel разработчики придерживаются двух синтаксисов: Intel и AT&T. Ни у того ни у другого нет особых преимуществ: AT&T — стандартный синтаксис в Linux, а Intel используется в мире Microsoft.

Одна и та же команда в них выглядит по-разному.

Например, в синтаксисе Intel:

mov eax, ebx — команда перемещает данные из регистра eax в регистр ebx.

В синтаксисе AT&T эта команда выглядит так:

Почему для разных семейств процессоров нужен свой ассемблер?

Дело в том, что у каждого процессора есть набор характеристик — архитектура. Это его конструкция и принцип работы, а также регистры, адресация памяти и используемый набор команд. Если у процессоров одинаковая архитектура, то говорят, что они из одного семейства.

Так как наборы команд для разных архитектур процессоров отличаются друг от друга, то и программы на ассемблере, написанные для одних семейств, не будут работать на процессорах из других семейств. Поэтому ассемблер называют машинно-ориентированным языком.

Кому и зачем нужен язык ассемблера?

Даже из нашего примера «Hello, World!» видно, что ассемблер не так удобен в разработке, как языки высокого уровня. Больших программ на этом языке сейчас никто не пишет, но есть области, где он незаменим:

Если вы хотите разрабатывать новые микропроцессоры или стать реверс-инженером, то есть смысл серьёзно заняться изучением языка ассемблера.

Востребованы ли программисты на ассемблере сегодня?

Конечно. Хотя на сайтах по поиску работу вы вряд ли найдёте заявки от работодателей с заголовками: «Нужен программист на ассемблере», зато там много таких, где требуется знание ассемблера дополнительно к языкам высокого уровня: C, C++ или Python. Это вакансии реверс-инженеров, специалистов по компьютерной безопасности, разработчиков драйверов и программ для микроконтроллеров/микропроцессоров, системных программистов и другие.

Предлагаемая зарплата — обычная в сфере IT: 80–300 тысяч рублей в зависимости от квалификации и опыта. Вот, например, вакансия реверс-инженера на HeadHunter, где требуется знание ассемблера:

как программировать на машинном коде. 11223329072021 accf102caaa970ce65d217b9ae9a8e9a57caa67c. как программировать на машинном коде фото. как программировать на машинном коде-11223329072021 accf102caaa970ce65d217b9ae9a8e9a57caa67c. картинка как программировать на машинном коде. картинка 11223329072021 accf102caaa970ce65d217b9ae9a8e9a57caa67c. Интерпретатор переводит Вашу программу с языка высокого уровня (например, БЕЙСИКа) в машинный код последовательно строку за строкой. Он работает примерно так: прочитал строку, проверил, нет ли в ней ошибок, перевел ее в машинный код, выполнил команды машинного кода, запомнил, где нужно результат и перешел к следующей строке. Чтобы сделать, например, операцию

как программировать на машинном коде. 11223329072021 08fda0244b5397e030ee401fd2bea5b24f78a72b. как программировать на машинном коде фото. как программировать на машинном коде-11223329072021 08fda0244b5397e030ee401fd2bea5b24f78a72b. картинка как программировать на машинном коде. картинка 11223329072021 08fda0244b5397e030ee401fd2bea5b24f78a72b. Интерпретатор переводит Вашу программу с языка высокого уровня (например, БЕЙСИКа) в машинный код последовательно строку за строкой. Он работает примерно так: прочитал строку, проверил, нет ли в ней ошибок, перевел ее в машинный код, выполнил команды машинного кода, запомнил, где нужно результат и перешел к следующей строке. Чтобы сделать, например, операцию

как программировать на машинном коде. 11223329072021 6896a8696b8038f4fc8989ab005e4fccc3b90047. как программировать на машинном коде фото. как программировать на машинном коде-11223329072021 6896a8696b8038f4fc8989ab005e4fccc3b90047. картинка как программировать на машинном коде. картинка 11223329072021 6896a8696b8038f4fc8989ab005e4fccc3b90047. Интерпретатор переводит Вашу программу с языка высокого уровня (например, БЕЙСИКа) в машинный код последовательно строку за строкой. Он работает примерно так: прочитал строку, проверил, нет ли в ней ошибок, перевел ее в машинный код, выполнил команды машинного кода, запомнил, где нужно результат и перешел к следующей строке. Чтобы сделать, например, операцию

Стоит ли начинать изучение программирования с языка ассемблера?

Нет, так делать не нужно. Для этого есть несколько причин:

Поэтому, даже если вы решили заняться профессией, связанной с ассемблером, изучение программирования вам лучше начинать с языка высокого уровня. А уж ассемблер после него будет выучить несложно.

обложка: Полина Суворова для Skillbox Media

Источник

Машинный код и компиляция в него — это как?

как программировать на машинном коде. Z2MFa. как программировать на машинном коде фото. как программировать на машинном коде-Z2MFa. картинка как программировать на машинном коде. картинка Z2MFa. Интерпретатор переводит Вашу программу с языка высокого уровня (например, БЕЙСИКа) в машинный код последовательно строку за строкой. Он работает примерно так: прочитал строку, проверил, нет ли в ней ошибок, перевел ее в машинный код, выполнил команды машинного кода, запомнил, где нужно результат и перешел к следующей строке. Чтобы сделать, например, операцию

1 ответ 1

Baremetal

Каждый конкретный процессор (например, Intel Core i3-4160 или ARM Cortex-A9) имеет свою микроархитектуру и реализует архитектуру уровня набора команд (англ. instruction set architecture).

Микроархитектура определяет структуру процессора на уровне электронных компонентов и логических вентилей.

Архитектура уровня набора команд (ISA), грубо говоря, определяет то, какие команды может выполнять процессор. Эта архитектура абстрагированна от микроархитектуры. Процессоры разных комнаний могут реализовывать одну и ту же архитектуру (например, многие процессоры Intel и AMD реализует одно и то же семейство архитектур x86).

Если два процессора реализуют одну и ту же ISA, то они могут исполнять одни и те же программы. ISA определяет, какие команды доступны программисту, какие регистры он может использовать, как он может использовать страничную адресацию, виртуальную память и т. д. Кроме того, она определяет формат команд, которые понимает процессор.

Каждая программа процессора — это просто набор подряд идущих команд. При своем запуске процессор выбирает команду из память по адресу, называемому вектором сброса (англ. reset vector) и начинает исполнять эту программу, пока питание не будет отключено.

Написать программу в машинных кодах достаточно просто — нужно лишь взять справочник по ISA (например, Intel 64 and IA-32 Architectures Software Developer Manuals), которую реализует ваш процессор и написать нужные команды байт за байтом.

Конечно, в наше время никто в машинных кодах не пишет, потому что человеку тяжело работать с большим объемом чисел и сложными форматами команд (особенно в x86). Из-за таких сложностей были придуманы языки ассемблера, которые вводят простые мнемоники для инструкций процессора.

Вот так может выглядет отрывок программы на языке ассемблера:

Вот так выглядит программа на машинном языке:

Очевидно, что асссемблерный код и читать, и писать проще.

Теперь у вас достаточно знаний, чтобы открыть справочник, как по словарю, написать программу в машинных кодах и исполнить ее на процессоре. Но, это не сработает в случае, если вы хотите написать программу, которая будет работать в какой-либо операционной системе.

Операционная система

Как я уже сказал, каждая программа процессора — это просто последовательность команд, однако каждая программа операционной системы — это особая последовательность байт, имеющая специальную структуру, в которую входят не только команды процессора.

Поэтому чтобы вручную написать программу в машинных кодах, которая будет запускаться в Windows 10, например, нам, по-мимо написания самой программы, потребуется привести ее к формату Portable Executable.

Но и этого будет не достаточно. Нам придется ознакомится с соглашениями, которые называются ABI и написать программу в машинных кодах, используя именно эти соглашения, а не какие-то другие.

Здесь необходимо, чтобы все части паззла подходили друг к другу по форме: программа должна быть валидной для процессора, формат бинарного файла должен быть понятен операционной системе, программа должна уметь корректно общаться с ОС и т. д. Это все очень сложно обеспечить, если писать программу в шестнадцатеричном редакторе.

Можете начать с написания программ на языке ассемблера (да, вам придется еще выучить синтаксис конкретного языка ассемблера и диалект Intel или AT&T). «Hello, World» на языке NASM будет выглядеть так:

А нужно ли вам это?

В наше время компьютеры стали очень сложными, с десятками слоями абстраций. Даже инструкции ISA современных процессоров — не атомарные сущности, и процессоры выполняет каждую такую инструкцию как набор еще более мелких инструкций — микрооперации (из таких мокроопераций складывается микрокод).

На самом деле, умение писать на языке ассемблера (а тем более, на машинном языке) довольно бесполезно. Умение просто читать и понимать ассемблерный листинг гораздо более практично и действительно может вам пригодится.

А непрактично это в первую очередь потому, что ничего сложнее «Hello, World!» в машинных кодах вы не напишете. На ассемблере — да, напишете, но потратите на это колоссальное количество времени, которое можно было бы потратить на более полезные вещи.

1. Что интересно, инструкция MOV в x86 является Тьюринг-полной, т. е. любая программа может быть написана с использованием одной только этой инструкции. Есть даже специальный компилятор, который использует только одну эту инструкцию.

2. Некоторые ассемблеры могут сразу формировать исполняемые файлы в нужном формате. В том числе и Portable Executable.

3. Я говорю о современных ОС типа Windows или Linux.

Источник

Введение в машинное обучение

Полный курс на русском языке можно найти по этой ссылке.
Оригинальный курс на английском доступен по этой ссылке.

как программировать на машинном коде. f 6ymlhmfceofcmhbv2qsfv2hfu. как программировать на машинном коде фото. как программировать на машинном коде-f 6ymlhmfceofcmhbv2qsfv2hfu. картинка как программировать на машинном коде. картинка f 6ymlhmfceofcmhbv2qsfv2hfu. Интерпретатор переводит Вашу программу с языка высокого уровня (например, БЕЙСИКа) в машинный код последовательно строку за строкой. Он работает примерно так: прочитал строку, проверил, нет ли в ней ошибок, перевел ее в машинный код, выполнил команды машинного кода, запомнил, где нужно результат и перешел к следующей строке. Чтобы сделать, например, операцию

Выход новых лекций запланирован каждые 2-3 дня.

Интервью с Себастьяном Труном, CEO Udacity

— И снова всем привет, с вами я, Пейдж и сегодня со мной гость — Себастьян.
— Привет, я Себастьян!
— … человек у которого невероятная карьера, успевшего сделать множество потрясающих вещей! Вы являетесь со-основателем Udacity, вы основали Google X, вы професcор в Стэнфорде. Вы занимались невероятными исследованиями и глубоким обучением на всём протяжении своей карьеры. Что приносило вам наибольшее удовлетворение и в какой из областей вы получали наибольшее вознаграждение за проделанную работу?
— Скажу честно, я очень люблю находиться в Кремниевой долине! Мне нравится находится рядом с людьми, которые значительно умнее меня, и я всегда рассматривал технологии, как инструмент менющий правила игры различными способами — начиная от образования и заканчивая логистикой, здравохранением и т.д. Всё это меняется настолько быстро, и возникает невероятное желание быть участником этих изменений, наблюдать за ними. Ты смотришь на окружающее тебя и понимаешь, что большинство из того, что ты видишь вокруг, не работает так, как это должно — всегда можно изобрести нечто новое!
— Ну что ж, это очень оптимистичный взгляд на технологии! Какой момент на протяжении всей вашей карьеры был самой большой «эврикой»?
— Господи, их было так много! Помню один из дней, когда Ларри Пейдж позвонил мне и предложил создать автопилотируемые автомобили, которые смогли бы проезжать по всем улицам Калифорнии. В то время я считался экспертом, меня к таковым причисляли и, я был тем самым человеком, который сказал «нет, этого нельзя сделать». После этого Ларри убедил меня, что, в принципе, это возможно сделать, стоит только начать и сделать попытку. И мы сделали это! Это был момент, когда я осознал, что даже эксперты ошибаются и говоря «нет» мы на 100% становимся пессимистами. Я думаю мы должны быть более открыты новому.
— Или, например, если вам звонит Ларри Пейдж и говорит, — «Хэй, сделай крутую вещь вроде Google X» и получается нечто достаточно крутое!
— Да, это точно, жаловаться не приходится! Я имею ввиду, что всё это — процесс, который проходит через множество обсуждений на пути к реализации. Мне, действительно, повезло работать и я горжусь этим, в Google X и над другими проектами.
— Потрясающе! Итак, этот курс полностью о работе с TensorFlow. У вас есть опыт использования TensorFlow или может быть вы знакомы (слышали) с ним?
— Да! Я, в буквальном смысле, люблю TensorFlow, конечно! В моей собственной лаборатории мы используем его часто и много, одна из самых значимых работ на основе TensorFlow вышла около двух лет назад. Мы узнали, что iPhone и Android могут быть эффективнее в определении рака кожи, чем лучшие дерматологи в мире. Своё исследование мы опубликовали в Nature и это произвело своего рода переполох в медицине.
— Звучит потрясающе! Значит вы знаете и любите TensorFlow, что само по себе здорово! Вы уже успели поработать с TensorFlow 2.0?
— Нет, к сожалению пока не успел.
— Он будет просто восхитителен! Все студенты этого курса будут работать с этой версией.
— Я завидую им! Обязательно попробую!
— Прекрасно! На нашем курсе очень много студентов, которые в своей жизни ни разу не занимались машинным обучение, от слова «совсем». Для них область может быть нова, возможно для кого-то само программирование будет вновинку. Какой у вас совет для них?
— Я бы пожелал им оставаться открытыми — к новым идеям, методикам, решениям, позициям. Машинное обучение, на самом деле, проще, чем программирование. В процессе программирования вам необходимо учитывать каждый случай в исходных данных, адаптировать под него логику программы и правила. В это самое время, используя TensorFlow и машинное обучение вы, по сути, тренируете компьютер используя примеры, предоставляя компьютеру самому находить правила.
— Это невероятно интересно! Мне не терпится рассказать студентам этого курса немного больше о машинном обучении! Себастьян, благодарю, что нашел время и пришёл сегодня к нам!
— Благодарю! Оставайтесь на связи!

Что такое машинное обучение?

Итак, давайте начнём со следующей задачи — даны входные и выходные значения.

как программировать на машинном коде. . как программировать на машинном коде фото. как программировать на машинном коде-. картинка как программировать на машинном коде. картинка . Интерпретатор переводит Вашу программу с языка высокого уровня (например, БЕЙСИКа) в машинный код последовательно строку за строкой. Он работает примерно так: прочитал строку, проверил, нет ли в ней ошибок, перевел ее в машинный код, выполнил команды машинного кода, запомнил, где нужно результат и перешел к следующей строке. Чтобы сделать, например, операцию

Когда в качестве входного значения у вас значение 0, то в качестве выходного значения — 32. Когда в качестве входного значения у вас 8, то в качестве выходного значения — 46.4. Когда в качестве входного значения у вас 15, то в качестве выходного значения — 59 и так далее.

Присмотритесь к этим значениям и позвольте мне задать вам вопрос. Можете ли вы определить, каким будет выходное значение, если на входе мы получим 38?

как программировать на машинном коде. . как программировать на машинном коде фото. как программировать на машинном коде-. картинка как программировать на машинном коде. картинка . Интерпретатор переводит Вашу программу с языка высокого уровня (например, БЕЙСИКа) в машинный код последовательно строку за строкой. Он работает примерно так: прочитал строку, проверил, нет ли в ней ошибок, перевел ее в машинный код, выполнил команды машинного кода, запомнил, где нужно результат и перешел к следующей строке. Чтобы сделать, например, операцию

Если вы ответили 100.4, то оказались правы!

как программировать на машинном коде. bvz9 kkmmvjurwja9ltuupq lje. как программировать на машинном коде фото. как программировать на машинном коде-bvz9 kkmmvjurwja9ltuupq lje. картинка как программировать на машинном коде. картинка bvz9 kkmmvjurwja9ltuupq lje. Интерпретатор переводит Вашу программу с языка высокого уровня (например, БЕЙСИКа) в машинный код последовательно строку за строкой. Он работает примерно так: прочитал строку, проверил, нет ли в ней ошибок, перевел ее в машинный код, выполнил команды машинного кода, запомнил, где нужно результат и перешел к следующей строке. Чтобы сделать, например, операцию

Итак, как мы могли решить эту задачу? Если присмотреться внимательнее к значениям, то можно заметить, что они связаны выражением:

как программировать на машинном коде. bmqlpqb79ptaf8q gsikh9wg3pg. как программировать на машинном коде фото. как программировать на машинном коде-bmqlpqb79ptaf8q gsikh9wg3pg. картинка как программировать на машинном коде. картинка bmqlpqb79ptaf8q gsikh9wg3pg. Интерпретатор переводит Вашу программу с языка высокого уровня (например, БЕЙСИКа) в машинный код последовательно строку за строкой. Он работает примерно так: прочитал строку, проверил, нет ли в ней ошибок, перевел ее в машинный код, выполнил команды машинного кода, запомнил, где нужно результат и перешел к следующей строке. Чтобы сделать, например, операцию

Где С — градусы Цельсия (входные значения), F — Фаренгейта (выходные значения).

То, что сейчас сделал ваш мозг — сопоставил входные значения и выходные значения и нашел общую модель (связь, зависимость) между ними, — именно это и делает машинное обучение.

По входным и выходным значениям алгоритмы машинного обучения найдут подходящий алгоритм преобразования входных значений в выходные. Это можно представить следующим образом:

как программировать на машинном коде. . как программировать на машинном коде фото. как программировать на машинном коде-. картинка как программировать на машинном коде. картинка . Интерпретатор переводит Вашу программу с языка высокого уровня (например, БЕЙСИКа) в машинный код последовательно строку за строкой. Он работает примерно так: прочитал строку, проверил, нет ли в ней ошибок, перевел ее в машинный код, выполнил команды машинного кода, запомнил, где нужно результат и перешел к следующей строке. Чтобы сделать, например, операцию

как программировать на машинном коде. me0wt6lyjkzoqbgdwb3 tvtv2s0. как программировать на машинном коде фото. как программировать на машинном коде-me0wt6lyjkzoqbgdwb3 tvtv2s0. картинка как программировать на машинном коде. картинка me0wt6lyjkzoqbgdwb3 tvtv2s0. Интерпретатор переводит Вашу программу с языка высокого уровня (например, БЕЙСИКа) в машинный код последовательно строку за строкой. Он работает примерно так: прочитал строку, проверил, нет ли в ней ошибок, перевел ее в машинный код, выполнил команды машинного кода, запомнил, где нужно результат и перешел к следующей строке. Чтобы сделать, например, операцию

Решение, при подходе с точки зрения традиционной разработки программного обеспечения, может быть реализовано на любом языке программирования с использованием функции:

как программировать на машинном коде. e3oizkl4oob fnd2yq. как программировать на машинном коде фото. как программировать на машинном коде-e3oizkl4oob fnd2yq. картинка как программировать на машинном коде. картинка e3oizkl4oob fnd2yq. Интерпретатор переводит Вашу программу с языка высокого уровня (например, БЕЙСИКа) в машинный код последовательно строку за строкой. Он работает примерно так: прочитал строку, проверил, нет ли в ней ошибок, перевел ее в машинный код, выполнил команды машинного кода, запомнил, где нужно результат и перешел к следующей строке. Чтобы сделать, например, операцию

Итак, что мы имеем? Функция принимает входное значение C, затем вычисляет выходное значение F используя явно заданный алгоритм, а затем возвращает вычисленное значение.

как программировать на машинном коде. . как программировать на машинном коде фото. как программировать на машинном коде-. картинка как программировать на машинном коде. картинка . Интерпретатор переводит Вашу программу с языка высокого уровня (например, БЕЙСИКа) в машинный код последовательно строку за строкой. Он работает примерно так: прочитал строку, проверил, нет ли в ней ошибок, перевел ее в машинный код, выполнил команды машинного кода, запомнил, где нужно результат и перешел к следующей строке. Чтобы сделать, например, операцию

С другой стороны, в подходе с машинным обучением, у нас есть только входные и выходные значения, но не сам алгоритм:

как программировать на машинном коде. m13swy6p2a4z wuboqdawda7m 8. как программировать на машинном коде фото. как программировать на машинном коде-m13swy6p2a4z wuboqdawda7m 8. картинка как программировать на машинном коде. картинка m13swy6p2a4z wuboqdawda7m 8. Интерпретатор переводит Вашу программу с языка высокого уровня (например, БЕЙСИКа) в машинный код последовательно строку за строкой. Он работает примерно так: прочитал строку, проверил, нет ли в ней ошибок, перевел ее в машинный код, выполнил команды машинного кода, запомнил, где нужно результат и перешел к следующей строке. Чтобы сделать, например, операцию

Подход с машинным обучением основывается на использовании нейронных сетей для нахождения отношений между входными и выходными значениями.

как программировать на машинном коде. sd ucbyegwsntvcufqhgzqgqefs. как программировать на машинном коде фото. как программировать на машинном коде-sd ucbyegwsntvcufqhgzqgqefs. картинка как программировать на машинном коде. картинка sd ucbyegwsntvcufqhgzqgqefs. Интерпретатор переводит Вашу программу с языка высокого уровня (например, БЕЙСИКа) в машинный код последовательно строку за строкой. Он работает примерно так: прочитал строку, проверил, нет ли в ней ошибок, перевел ее в машинный код, выполнил команды машинного кода, запомнил, где нужно результат и перешел к следующей строке. Чтобы сделать, например, операцию

Вы можете думать о нейронных сетях, как о стопке слоёв, каждый из которых состоит из заранее известной математики (формул) и внутренних переменных. Входное значение поступает в нейронную сеть и проходит сквозь стопку слоёв нейронов. Во время прохождения через слои, входное значение преобразовывается согласно математике (заданным формулам) и значениям внутренних переменных слоёв, производя выходное значение.

Для того, чтобы нейронная сеть смогла обучиться и определить правильные отношения между входными и выходными значениями, нам необходимо её обучить — натренировать.

Мы тренируем нейронную сеть через повторяющиеся попытки сопоставить входные значения выходным.

как программировать на машинном коде. a78rk54x g6lpgjm67cvmuas43c. как программировать на машинном коде фото. как программировать на машинном коде-a78rk54x g6lpgjm67cvmuas43c. картинка как программировать на машинном коде. картинка a78rk54x g6lpgjm67cvmuas43c. Интерпретатор переводит Вашу программу с языка высокого уровня (например, БЕЙСИКа) в машинный код последовательно строку за строкой. Он работает примерно так: прочитал строку, проверил, нет ли в ней ошибок, перевел ее в машинный код, выполнил команды машинного кода, запомнил, где нужно результат и перешел к следующей строке. Чтобы сделать, например, операцию

В процессе тренировки происходит «подгонка» (подбор) значений внутренних переменных в слоях нейронной сети до тех пор, пока сеть не научится генерировать соответствующие выходные значения соответствующим входным значениям.

Как мы увидим в последующем, для того чтобы обучить нейронную сеть и позволить ей подобрать наиболее подходящие значения внутренних переменных, производят тысячи или десятки тысяч итераций (тренировок).

как программировать на машинном коде. kvh5xahns3dammp0e1 guhsjwmg. как программировать на машинном коде фото. как программировать на машинном коде-kvh5xahns3dammp0e1 guhsjwmg. картинка как программировать на машинном коде. картинка kvh5xahns3dammp0e1 guhsjwmg. Интерпретатор переводит Вашу программу с языка высокого уровня (например, БЕЙСИКа) в машинный код последовательно строку за строкой. Он работает примерно так: прочитал строку, проверил, нет ли в ней ошибок, перевел ее в машинный код, выполнил команды машинного кода, запомнил, где нужно результат и перешел к следующей строке. Чтобы сделать, например, операцию

В качестве упрощенного варианта понимания машинного обучения вы можете представить себе алгоритмы машинного обучения как функции, которые подбирают значения внутренних переменных таким образом, чтобы соответствующим входным значениям соответствовали корректные выходные значения.

Существует множество типов архитектур нейронных сетей. Однако, вне зависимости от того, какую архитектуру вы выберете, математика внутри (какие вычисления выполняются и в каком порядке) останется неизменной в процессе тренировки. Вместо изменения математики, меняются внутренние переменные (веса и смещения) во время тренировки.

Например, в задаче конвертации из градусов Цельсия в Фаренгейты, модель начинает с умножения входного значения на некоторое число (вес) и добавления другого значения (смещения). Обучение модели заключается в нахождении подходящих значений для этих переменных, без изменения выполняемых операций умножения и сложения.

А вот одна крутая вещь над которой стоит задуматься! Если вы решили задачу преобразования градусов Цельсия в Фаренгейты, которая обозначена в видео и в тексте ниже, вы, вероятно, решили её потому, что обладали неким предыдущим опытом или знанием, как производить подобного рода преобразования из градусов Цельсия в Фаренгейты. Например, вы могли просто знать, что 0 градусов Цельсия соответствуют 32 градусам по Фаренгейту. С другой стороны, системы основанные на машинном обучении не обладают предыдущими вспомогательными знаниями для решения поставленной задачи. Они учатся решать подобного рода задачи не основываясь на предыдущих знаниях и при их полном отсутствии.

Довольно разговоров — переходим к практической части лекции!

CoLab: преобразуем градусы Цельсия в градусы Фаренгейта

Основы: обучение первой модели

Добро пожаловать в CoLab, где мы будем тренировать нашу первую модель машинного обучения!

Мы постараемся сохранять простоту преподносимого материала и ввести только базовые понятия необходимые для работы. Последующие CoLabs будут содержать более продвинутые техники.

Задача, которую мы будем решать — преобразование градусов Цельсия в градусы Фаренгейта. Формула преобразования выглядит следующим образом:

как программировать на машинном коде. 8dd5d5622f0c492df0458d1dae5b8345. как программировать на машинном коде фото. как программировать на машинном коде-8dd5d5622f0c492df0458d1dae5b8345. картинка как программировать на машинном коде. картинка 8dd5d5622f0c492df0458d1dae5b8345. Интерпретатор переводит Вашу программу с языка высокого уровня (например, БЕЙСИКа) в машинный код последовательно строку за строкой. Он работает примерно так: прочитал строку, проверил, нет ли в ней ошибок, перевел ее в машинный код, выполнил команды машинного кода, запомнил, где нужно результат и перешел к следующей строке. Чтобы сделать, например, операцию

Безусловно, было бы проще просто написать функцию конвертации на Python или любом другом языке программирования, которая бы выполняла непосредственные вычисления, но в таком случае это не было бы машинным обучением 🙂

Вместо этого мы подадим на вход TensorFlow имеющиеся у нас входные значения градусов Цельсия (0, 8, 15, 22, 38) и их соответствующие градусы по Фаренгейту (32, 46, 59, 72, 100). Затем мы натренируем модель таким образом, чтобы та примерно соответствовала приведённой выше формуле.

Импорт зависимостей

Подготовка данных для тренировки

Создаём модель

Строим сеть

Мы назовём слой l0 (layer и ноль) и создадим его, инициализировав tf.keras.layers.Dense со следующими параметрами:

Преобразуем слои в модель

Примечание
Достаточно часто вы будете сталкиваться с определением слоёв прямо в функции модели, нежели с их предварительным описанием и последующим использованием:

Компилируем модель с функцией потерь и оптимизаций

Перед тренировкой модель должна быть скомпилирована (собрана). При компиляции для тренировки необходимы:

Функция потерь и функция оптимизации используются во время тренировки модели ( model.fit(. ) упоминаемая ниже) для выполнения первичных вычислений в каждой точке и последующей оптимизации значений.

Действие вычисления текущих потерь и последующее улучшение этих значений в модели — это именно то, чем является тренировка (одна итерация).

Во время тренировки, функция оптимизации используется для подсчета корректировок значений внутренних переменных. Цель — подогнать значения внутренних переменных таким образом в модели (а это, по сути, математическая функция), чтобы те отражали максимально приближённо существующее выражение конвертации градусов Цельсия в градусы Фаренгейта.

TensorFlow использует численный анализ для выполнения подобного рода операций оптимизации и вся эта сложность скрыта от наших глаз, поэтому мы не будем вдаваться в детали в этом курсе.

Что полезно знать об этих параметрах:

Функция потерь (среднеквадратичная ошибка) и функция оптимизации (Adam), используемые в этом примере, являются стандартными для подобных простых моделей, но кроме них доступно множество других. На данном этапе нам не важно каким образом работают эти функции.

Тренируем модель

Во время тренировки модель получает на вход значения градусов Цельсия, выполняет преобразования используя значения внутренних переменных (называемые «весами») и возвращает значения, которые должны соответствовать градусами по Фаренгейту. Так как первоначальные значения весов установлены произвольными, то и результатирующие значения будут далеки от корректных значений. Разница между необходимым результатом и фактическим вычисляется с использованием функции потерь, а функция оптимизации определяет каким образом должны быть подкорректированы веса.

Отображаем статистику тренировок

как программировать на машинном коде. image loader. как программировать на машинном коде фото. как программировать на машинном коде-image loader. картинка как программировать на машинном коде. картинка image loader. Интерпретатор переводит Вашу программу с языка высокого уровня (например, БЕЙСИКа) в машинный код последовательно строку за строкой. Он работает примерно так: прочитал строку, проверил, нет ли в ней ошибок, перевел ее в машинный код, выполнил команды машинного кода, запомнил, где нужно результат и перешел к следующей строке. Чтобы сделать, например, операцию

Используем модель для предсказаний

Теперь у нас есть модель, которая была обучена на входных значениях celsius_q и выходных значениях fahrenheit_a для определения взаимосвязи между ними. Мы можем воспользоваться методом предсказания для вычисления тех значений градусов Фаренгейта по которым ранее нам неизвестны были соответствующие градусы Цельсия.

Например, сколько будет 100.0 градусов Цельсия по Фаренгейту? Попробуйте угадать перед тем как запускать код ниже.

Правильный ответ 100×1.8+32=212, так что наша модель справилась достаточно хорошо!

Смотрим на веса

Значение первой переменной близко к

32. Эти значения (1.8 и 32) являются непосредственными значениями в формуле конвертации градусов Цельсия в градусы Фаренгейта.

Так как представления одинаковые, то и значения внутренних переменных модели должны были сойтись к тем, которые представлены в фактической формуле, что и произошло в итоге.

При наличии дополнительных нейронов, дополнительных входных значений и выходных значений, формула становится немного сложнее, но суть остаётся той же.

Немного экспериментов

Как вы могли уже заметить, текущая модель тоже способна достаточно хорошо предсказывать соответствующие значения градусов Фаренгейта. Однако, если взглянуть на значения внутренних переменных (веса) нейронов по слоям, то никаких значений похожих на 1.8 и 32 мы уже не увидим. Добавленная сложность модели скрывает «простую» форму преобразования градусов Цельсия в градусы Фаренгейта.

Оставайся на связи и в следующей части мы рассмотрим то, каким образом работают Dense-слои «под капотом».

Краткое резюме

Поздравляем! Вы только что обучили свою первую модель. Мы на практике увидели, каким образом по входным и выходным значениям модель научилась умножать входное значение на 1.8 и прибавлять к нему 32 для получения корректного результата.

как программировать на машинном коде. g7c9horz6n3sokt6htkcie4ydsq. как программировать на машинном коде фото. как программировать на машинном коде-g7c9horz6n3sokt6htkcie4ydsq. картинка как программировать на машинном коде. картинка g7c9horz6n3sokt6htkcie4ydsq. Интерпретатор переводит Вашу программу с языка высокого уровня (например, БЕЙСИКа) в машинный код последовательно строку за строкой. Он работает примерно так: прочитал строку, проверил, нет ли в ней ошибок, перевел ее в машинный код, выполнил команды машинного кода, запомнил, где нужно результат и перешел к следующей строке. Чтобы сделать, например, операцию

Это было по-настоящему впечатляюще, учитывая то, сколько строчек кода нам понадобилось написать:

Приведённый выше пример — общий план для всех программ машинного обучения. Вы будете использовать подобные конструкции для создания и обучения нейронных сетей и для решения последующих задач.

Процесс тренировки

Процесс тренировки (происходящий в методе model.fit(. ) ) состоит из весьма простой последовательности действий, результатом которых должны стать значения внутренних переменных дающих максимально близкий к исходному результаты. Процесс оптимизации, благодаря которому достигаются такие результаты, называется градиентным спуском, использует численный анализ для поиска максимально подходящих значений для внутренних переменных модели.

Чтобы заниматься машинным обучением вам, в принципе, нет необходимости разбираться в этих деталях. Но для тех, кому всё-таки интересно узнать больше: градиентный спуск посредством итераций изменяет значения параметров по-немногу, «вытягивая» их в нужном направлении, до тех пор пока не будут получены наилучшие результаты. В данном случае «лучшие результаты» (лучшие значения) означают, что любое последующее изменение параметра только ухудшит результат модели. Функция, которая измеряет насколько хороша или плоха модель на каждой итерации называется «функцией потерь», и цель каждого «вытягивания» (корректировки внутренних значений) — уменьшить значение функции потерь.

Процесс тренировки начинается с блока «прямое распространение», при котором входные параметры поступают на вход нейронной сети, следуют к скрытым нейронам и затем идут к выходным. Затем модель применяет внутренние преобразования над входными значениями и внутренними переменными для предсказания ответа.

В нашем примере, входным значением является температура в градусах Цельсия и модель предсказывала соответствующее значение в градусах Фаренгейта.

как программировать на машинном коде. . как программировать на машинном коде фото. как программировать на машинном коде-. картинка как программировать на машинном коде. картинка . Интерпретатор переводит Вашу программу с языка высокого уровня (например, БЕЙСИКа) в машинный код последовательно строку за строкой. Он работает примерно так: прочитал строку, проверил, нет ли в ней ошибок, перевел ее в машинный код, выполнил команды машинного кода, запомнил, где нужно результат и перешел к следующей строке. Чтобы сделать, например, операцию

После вычисления значения потери, внутренние переменные (веса и смещения) всех слоёв нейронной сети подвергаются корректировке для минимизации значения потери с целью приближения выходного значения к корректному исходному эталонному значению.

как программировать на машинном коде. . как программировать на машинном коде фото. как программировать на машинном коде-. картинка как программировать на машинном коде. картинка . Интерпретатор переводит Вашу программу с языка высокого уровня (например, БЕЙСИКа) в машинный код последовательно строку за строкой. Он работает примерно так: прочитал строку, проверил, нет ли в ней ошибок, перевел ее в машинный код, выполнил команды машинного кода, запомнил, где нужно результат и перешел к следующей строке. Чтобы сделать, например, операцию

Для этого курса не является обязательным понимание принципов работы процесса тренировки, однако, если вы достаточно любопытны, то можете найти больше информации в Google Crash Course (перевод и практическая часть всего курса заложены у автора в планах к публикации).

К этому моменты вы уже должны быть знакомы со следующими терминами:

Dense-слои

В предыдущей части мы создали модель, которая конвертирует градусы Цельсия в градусы Фаренгейта, используя простую нейронную сеть для нахождения зависимости между градусами Цельсия и градусами Фаренгейта.

Наша сеть состоит из единственного полносвязного слоя. Но что такое полносвязный слой? Чтобы в этом разобраться давайте создадим более сложную нейронную сеть у которой 3 входных параметра, один скрытый слой с двумя нейронами и один выходной слой с единственным нейроном.

как программировать на машинном коде. . как программировать на машинном коде фото. как программировать на машинном коде-. картинка как программировать на машинном коде. картинка . Интерпретатор переводит Вашу программу с языка высокого уровня (например, БЕЙСИКа) в машинный код последовательно строку за строкой. Он работает примерно так: прочитал строку, проверил, нет ли в ней ошибок, перевел ее в машинный код, выполнил команды машинного кода, запомнил, где нужно результат и перешел к следующей строке. Чтобы сделать, например, операцию

как программировать на машинном коде. ykdlwbtzt8rbjusmtndstttg em. как программировать на машинном коде фото. как программировать на машинном коде-ykdlwbtzt8rbjusmtndstttg em. картинка как программировать на машинном коде. картинка ykdlwbtzt8rbjusmtndstttg em. Интерпретатор переводит Вашу программу с языка высокого уровня (например, БЕЙСИКа) в машинный код последовательно строку за строкой. Он работает примерно так: прочитал строку, проверил, нет ли в ней ошибок, перевел ее в машинный код, выполнил команды машинного кода, запомнил, где нужно результат и перешел к следующей строке. Чтобы сделать, например, операцию

Чтобы создать приведенную выше нейронную сеть нам достаточно следующих выражений:

Итак, мы разобрались с тем, что такое нейроны и как они связаны между собой. Но как на самом деле работают полносвязные слои?

Чтобы понять, что же на самом деле там происходит и что они делают, нам понадобится заглянуть «под капот» и разобрать внутреннюю математику нейронов.

как программировать на машинном коде. . как программировать на машинном коде фото. как программировать на машинном коде-. картинка как программировать на машинном коде. картинка . Интерпретатор переводит Вашу программу с языка высокого уровня (например, БЕЙСИКа) в машинный код последовательно строку за строкой. Он работает примерно так: прочитал строку, проверил, нет ли в ней ошибок, перевел ее в машинный код, выполнил команды машинного кода, запомнил, где нужно результат и перешел к следующей строке. Чтобы сделать, например, операцию

как программировать на машинном коде. gzffpftu7hqtdvesq6g9jmcjj10. как программировать на машинном коде фото. как программировать на машинном коде-gzffpftu7hqtdvesq6g9jmcjj10. картинка как программировать на машинном коде. картинка gzffpftu7hqtdvesq6g9jmcjj10. Интерпретатор переводит Вашу программу с языка высокого уровня (например, БЕЙСИКа) в машинный код последовательно строку за строкой. Он работает примерно так: прочитал строку, проверил, нет ли в ней ошибок, перевел ее в машинный код, выполнил команды машинного кода, запомнил, где нужно результат и перешел к следующей строке. Чтобы сделать, например, операцию

Что обязательно стоит иметь ввиду — внутренняя математика нейрона остаётся неизменной. Другими словами, в процессе тренировки меняются только веса и смещения.

Когда начинаешь изучать машинное обучение это может показаться странным — тот факт, что это действительно работает, но именно так работает машинное обучение!

Давайте теперь вернёмся к нашему примеру конвертации градусов Цельсия в градусы Фаренгейта.

как программировать на машинном коде. qvvfhzkmdgzktu yi8i64 cqo4q. как программировать на машинном коде фото. как программировать на машинном коде-qvvfhzkmdgzktu yi8i64 cqo4q. картинка как программировать на машинном коде. картинка qvvfhzkmdgzktu yi8i64 cqo4q. Интерпретатор переводит Вашу программу с языка высокого уровня (например, БЕЙСИКа) в машинный код последовательно строку за строкой. Он работает примерно так: прочитал строку, проверил, нет ли в ней ошибок, перевел ее в машинный код, выполнил команды машинного кода, запомнил, где нужно результат и перешел к следующей строке. Чтобы сделать, например, операцию

Если мы вернёмся к результатам работы нашей модели из практической части, то обратим внимание на то, что показатели веса и смещения были «откалиброваны» таким образом, что примерно соответствуют значениям из формулы.

Мы целенаправленно создали именно такой практический пример, чтобы наглядно показать точное сопоставление между весами и смещениями. Применяя машинное обучение на практике, мы никогда не сможем подобным образом сопоставить значения переменных с целевым алгоритмом, как в приведённом выше примере. Как мы сможем это сделать? Никак, потому что мы даже не знаем целевого алгоритма!

Решая задачи машинного обучения мы тестируем различные архитектуры нейронных сетей с различным количеством нейронов в них — методом проб и ошибок находим наиболее точные архитектуры и модели и надеемся, что они решат поставленную задачу в процессе обучения. В следующей практической части мы сможем изучить конкретные примеры такого подхода.

Оставайтесь на связи, потому что сейчас начнётся самое интересное!

Итоги

… и стандартные call-to-action — подписывайся, ставь плюс и делай share 🙂

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *