как сократить код python
Как оптимизировать код на Python
Как я сократил время выполнения приложения на 1/10
Данные советы просты в реализации и могут пригодиться вам в обозримом будущем.
Считается, что первоочередной задачей программиста является написание чистого и эффективного кода. Как только вы создали чистый код, можете переходить к следующим 10 подсказкам. Я подробно объясню их ниже.
Как я измеряю время и сложность кода?
Используйте структуры данных из хеш-таблиц
Если есть такая возможность, то вместо перебора данных коллекций пользуйтесь поиском.
Векторизация вместо циклов
Присмотритесь к Python-библиотекам, созданным на С (Numpy, Scipy и Pandas), и оцените преимущества векторизации. Вместо прописывания цикла, который раз за разом обрабатывает по одному элементу массива М, можно выполнять обработку элементов одновременно. Векторизация часто включает в себя оптимизированную стратегию группировки.
Сократите количество строк в коде
Пользуйтесь встроенными функциями Python. Например, map()
Каждое обновление строковой переменной создает новый экземпляр
Пример выше уменьшает объем памяти.
Для сокращения строк пользуйтесь циклами и генераторами for
Пользуйтесь многопроцессорной обработкой
Если ваш компьютер выполняет более одного процесса, тогда присмотритесь к многопроцессорной обработке в Python.
Она разрешает распараллеливание в коде. Многопроцессорная обработка весьма затратна, поскольку вам придется инициировать новые процессы, обращаться к общей памяти и т.д., поэтому пользуйтесь ей только для большого количества разделяемых данных. Для небольших объемов данных многопроцессорная обработка не всегда оправдана.
Многопроцессорная обработка очень важна для меня, поскольку я обрабатываю по несколько путей выполнения одновременно.
Пользуйтесь Cython
Cython — это статический компилятор, который будет оптимизировать код за вас.
Загрузите расширения Cythonmagic и пользуйтесь тегом Cython для компиляции кода через Cython.
Воспользуйтесь Pip для установки Cython:
Для работы с Cython:
Пользуйтесь Excel только при необходимости
Не так давно мне нужно было реализовать одно приложение. И мне бы пришлось потратить много времени на загрузку и сохранение файлов из/в Excel. Вместо этого я пошел другим путем: создал несколько CSV-файлов и сгруппировал их в отдельной папке.
Примечание: все зависит от задачи. Если создание файлов в Excel сильно тормозит работу, то можно ограничиться несколькими CSV-файлами и утилитой на нативном языке, которая объединит эти CSV в один Excel-файл.
Пользуйтесь Numba
Это — JIT-компилятор (компилятор «на лету»). С помощью декоратора Numba компилирует аннотированный Python- и NumPy-код в LLVM.
Разделите функцию на две части:
1. Функция, которая выполняет вычисления. Ее декорируйте с @autojit.
2. Функция, которая выполняет операции ввода-вывода.
Пользуйтесь Dask для распараллеливания операций Pandas DataFrame
Dask очень классный! Он помог мне с параллельной обработкой множества функций в DataFrame и NumPy. Я даже попытался масштабировать их в кластере, и все оказалось предельно просто!
Пользуйтесь пакетом swifter
Swifter использует Dask в фоновом режиме. Он автоматически рассчитывает наиболее эффективный способ для распараллеливания функции в пакете данных.
Это плагин для Pandas.
Пользуйтесь пакетом Pandarallel
Pandarallel может распараллеливать операции на несколько процессов.
Опять же, подходит только для больших наборов данных.
Общие советы
Как только вы добились чистого кода, можно приступать к рекомендациям, описанным выше.
Заключение
В данной статье были даны краткие подсказки по написанию кода. Они будут весьма полезны для тех, кто хочет улучшить производительность Python-кода.
Ускорение кода на Python средствами самого языка
Каким бы хорошим не был Python, есть у него проблема известная все разработчикам — скорость. На эту тему было написано множество статей, в том числе и на Хабре.
Так что же делать?
Тогда, если для вашего проекта выше перечисленные методы не подошли, что делать? Менять Python на другой язык? Нет, сдаваться нельзя. Будем оптимизировать сам код. Примеры будут взяты из программы, строящей множество Мандельброта заданного размера с заданным числом итераций.
Время работы исходной версии при параметрах 600*600 пикселей, 100 итераций составляло 3.07 сек, эту величину мы возьмем за 100%
Скажу заранее, часть оптимизаций приведет к тому, что код станет менее pythonic, да простят меня адепты python-way.
Шаг 0. Вынос основного кода программы в отдельную
Данный шаг помогает интерпретатору python лучше проводить внутренние оптимизации про запуске, да и при использовании psyco данный шаг может сильно помочь, т.к. psyco оптимизирует лишь функции, не затрагивая основное тело программы.
Если раньше рассчетная часть исходной программы выглядела так:
мы получили время 2.4 сек, т.е. 78% от исходного.
Шаг 1. Профилирование
Стандартная библиотека Python’a, это просто клондайк полезнейших модулей. Сейчас нас интересует модуль cProfile, благодаря которому, профилирование кода становится простым и, даже, интересным занятием.
Полную документацию по этому модулю можно найти здесь, нам же хватит пары простых команд.
Ordered by: internal time
ncalls tottime percall cumtime percall filename:lineno(function)
1 2.309 2.309 2.766 2.766 mand_slow.py:22(mandelbrot)
.
С её помощью, легко определить места, требующие оптимизации (строки с наибольшими значениями ncalls (кол-во вызовов функции), tottime и percall (время работы всех вызовов данной функции и каждого отдельного соответственно)).
В моем случае интересной частью вывода было (время выполнение отличается от указанного выше, т.к. профилировщик добавляет свой «оверхед»):
4613944 function calls (4613943 primitive calls) in 2.818 seconds
Ordered by: internal time
ncalls tottime percall cumtime percall filename:lineno(function)
1 2.309 2.309 2.766 2.766 mand_slow.py:22(mandelbrot)
3533224 0.296 0.000 0.296 0.000
360000 0.081 0.000 0.081 0.000
360000 0.044 0.000 0.044 0.000
360000 0.036 0.000 0.036 0.000
.
Итак, профиль получен, теперь займемся оптимизацией вплотную.
Шаг 2. Анализ профиля
Видим, что на первом месте по времени стоит наша основная функция mandelbrot, за ней идет системная функция abs, за ней несколько функций из модуля math, далее — одиночные вызовы функций, с минимальными временными затратами, они нам не интересны.
Итак, системные функции, «вылизаные» сообществом, нам врядли удастся улучшить, так что перейдем к нашему собственному коду:
Шаг 3. Математика
Сейчас, код выглядит так:
Заметим, что оператор возведения в степень ** — довольно «общий», нам же необходимо лишь возведение во вторую степень, т.е. все конструкции вида x**2 можно заменить на х*х, выиграв таким образом еще немного времени. Посмотрим на время:
1.9 сек, или 62% изначального времени, достигнуто простой заменой двух строк:
Шажки 5, 6 и 7. Маленькие, но важные
Прописная истина, о которой знают все программисты на Python — работа с глобальными переменными медленней работы с локальными. Но часто забывается факт, что это верно не только для переменных но и вообще для всех объектов. В коде функции идут вызовы нескольких функций из модуля math. Так почему бы не импортировать их в самой функции? Сделано:
Еще 0.1сек отвоевано.
Вспомним, что abs(x) вернет число типа float. Так что и сравнивать его стоит с float а не int:
Еще 0.15сек. 53% от начального времени.
И, наконец, грязный хак.
В конкретно этой задаче, можно понять, что нижняя половина изображения, равна верхней, т.о. число вычислений можно сократить вдвое, получив в итоге 0.84сек или 27% от исходного времени.
Заключение
Профилируйте. Используйте timeit. Оптимизируйте. Python — мощный язык, и программы на нем будут работать со скоростью, пропорциональной вашему желанию разобраться и все отполировать:)
Цель данной статьи, показать, что за счет мелких и незначительных изменения, таких как замен ** на *, можно заставить зеленого змея ползать до двух раз быстрее, без применения тяжелой артиллерии в виде Си, или шаманств psyco.
Также, можно совместить разные средства, такие как вышеуказанные оптимизации и модуль psyco, хуже не станет:)
Спасибо всем кто дочитал до конца, буду рад выслушать ваши мнения и замечания в комментариях!
UPD Полезную ссылку в коментариях привел funca.
Как оптимизировать код на Python
Как я сократил время выполнения приложения на 1/10
Jul 20, 2019 · 4 min read
Данные советы просты в реализации и могут пригодиться вам в обозримом будущем.
Считается, что первоочередной задачей программиста является написание чистого и эффективного кода. Как только вы создали чистый код, можете переходить к следующим 10 подсказкам. Я подробно объясню их ниже.
Как я измеряю время и сложность кода?
Используйте структуры данных из хеш-таблиц
Если есть такая возможность, то вместо перебора данных коллекций пользуйтесь поиском.
Векторизация вместо циклов
Присмотритесь к Python-библиотекам, созданным на С (Numpy, Scipy и Pandas), и оцените преимущества векторизации. Вместо прописывания цикла, который раз за разом обрабатывает по одному элементу массива М, можно выполнять обработку элементов одновременно. Векторизация часто включает в себя оптимизированную стратегию группировки.
Сократите количество строк в коде
Пользуйтесь встроенными функциями Python. Например, map()
Каждое обновление строковой переменной создает новый экземпляр
Пример выше уменьшает объем памяти.
Для сокращения строк пользуйтесь циклами и генераторами for
Пользуйтесь многопроцессорной обработкой
Если ваш компьютер выполняет более одного процесса, тогда присмотритесь к многопроцессорной обработке в Python.
Она разрешает распараллеливание в коде. Многопроцессорная обработка весьма затратна, поскольку вам придется инициировать новые процессы, обращаться к общей памяти и т.д., поэтому пользуйтесь ей только для большого количества разделяемых данных. Для небольших объемов данных многопроцессорная обработка не всегда оправдана.
Многопроцессорная обработка очень важна для меня, поскольку я обрабатываю по несколько путей выполнения одновременно.
Пользуйтесь Cython
Cython — это статический компилятор, который будет оптимизировать код за вас.
Загрузите расширения Cythonmagic и пользуйтесь тегом Cython для компиляции кода через Cython.
Воспользуйтесь Pip для установки Cython:
Для работы с Cython:
Пользуйтесь Excel только при необходимости
Не так давно мне нужно было реализовать одно приложение. И мне бы пришлось потратить много времени на загрузку и сохранение файлов из/в Excel. Вместо этого я пошел другим путем: создал несколько CSV-файлов и сгруппировал их в отдельной папке.
Примечание: все зависит от задачи. Если создание файлов в Excel сильно тормозит работу, то можно ограничиться несколькими CSV-файлами и утилитой на нативном языке, которая объединит эти CSV в один Excel-файл.
Пользуйтесь Numba
Это — JIT-компилятор (компилятор «на лету»). С помощью декоратора Numba компилирует аннотированный Python- и NumPy-код в LLVM.
Разделите функцию на две части:
1. Функция, которая выполняет вычисления. Ее декорируйте с @autojit.
2. Функция, которая выполняет операции ввода-вывода.
Пользуйтесь Dask для распараллеливания операций Pandas DataFrame
Dask очень классный! Он помог мне с параллельной обработкой множества функций в DataFrame и NumPy. Я даже попытался масштабировать их в кластере, и все оказалось предельно просто!
Пользуйтесь пакетом swifter
Swifter использует Dask в фоновом режиме. Он автоматически рассчитывает наиболее эффективный способ для распараллеливания функции в пакете данных.
Это плагин для Pandas.
Пользуйтесь пакетом Pandarallel
Pandarallel может распараллеливать операции на несколько процессов.
Опять же, подходит только для больших наборов данных.
Общие советы
Как только вы добились чистого кода, можно приступать к рекомендациям, описанным выше.
Заключение
В данной статье были даны краткие подсказки по написанию кода. Они будут весьма полезны для тех, кто хочет улучшить производительность Python-кода.
Как сократить код Python
Помогите пожалуйста я запутался.
Помощь в написании контрольных, курсовых и дипломных работ здесь.
Сократить код
Написал простенький код, который перемножает 2 числа. Можно как либо сократить? import.
Сократить код
Добрый день,нужно сократить код потому что между if и else всего разница в одну строку и одно слово.
Так же возможно, в решении поможет способ по которому я получаю списки.
Файл чека закрепил.
Вложения
RF105883.txt (7.1 Кб, 4 просмотров) | |
del.txt (31 байт, 2 просмотров) |
Решение
Воу, спасибо большое! Прям работает)
А как дать понять range сколько товара есть при чтении первого списка с переменной ‘а1’? Чтоб не создавало лишних строк в двумерный список. Сейчас товара 4, а завтра 12.
Спасибо, я нашел ответ.
Товарищ GrAnd вообще все в одну строку вывел, вот пример:
КулХацкеръ Ваш пример еще короче, благодарю!))
Помощь в написании контрольных, курсовых и дипломных работ здесь.
Как зациклить код на Python
#Здесь нужно написать что-то умное what = input(«Чтобы начать нажмите клавишу Enter «) if what ==.
While в Python: объясните как доработать код
Необходимо ввести два числа с условием их равности, причем одно число мы задаем, а с помощью.
Как защитить исходный код Python?
Как можно защитить exe файл от декомпиляции? Говорят что никак, но как тогда защищают свои.
Как загрузить программный код python в квадрокоптер
Добрый вечер. Не уверен, что это тот раздел, в котором стоит поднимать данный вопрос. Надеюсь, в.
Python: простые, но полезные советы по оптимизации кода
Санитарная обработка данных, пропуск начала итерируемого объекта и другие приёмы
Python считается мощным языком программирования и одним из самых универсальных: его можно использовать и в веб-разработке, и в продакт-менеджменте, и в научных исследованиях. Мы публикуем перевод статьи словацкого разработчика Мартина Хайнца, в которой он описывает девять практических советов о том, как сделать разработку на Python лучше.
Сделайте «санитарную» обработку входных данных эффективнее
Чем больше размер программы, тем выше шансы пропустить уязвимость в коде. Один из способов обезопасить себя от возможных ошибок — очистка входных данных перед выполнением программы (input sanitization). В большинстве случаев при таком подходе достаточно поменять регистр символов или использовать регулярные выражения. Но для сложных случаев есть и более эффективный способ:
Это простой пример: заменить «пробельные» символы \n и \t обычным пробелом и удалить \r (все перечисленные конструкции обозначают разные виды пробелов). В зависимости от задач, можно генерировать таблицы соответствий разного размера. Задачу облегчает пакет unicodedata и функция combining() для генерации и отображения. Их можно использовать для удаления всех акцентов из строки.
При необходимости используйте итератор со срезами
Итератор — это инструмент для поточной обработки данных. Он отвечает за упрощение навигации по элементам: списку, словарю и так далее. Это такой объект-перечислитель, который выдаёт следующий элемент. В основном его используют в цикле for.
Но использовать итератор на полную мощность нужно не всегда. И тут незадача: если вы попытаетесь использовать срез итератора (islice), то получите ошибку TypeError. Это произойдёт из-за того, что объект итератора не является подписываемым. К счастью, на такой случай есть простое решение:
Используя itertools.islice, можно создать объект islice, который сам по себе является итератором, производящим нужные нам значения. Важно отметить, что этот объект использует все элементы генератора вплоть до начала среза, что делает itertools.islice мощным инструментом.
Легко пропускайте начало итерируемого объекта
Иногда приходится работать с файлами, которые начинаются с неизвестного нам количества бесполезных строк, например, с комментариев. И тут itertools снова предлагает простое решение:
Этот фрагмент кода создаёт строки после начального комментария. Такой подход может быть полезен, если нужно отбросить элементы (в нашем случае строки) в начале итерируемого объекта.
Передавайте в функцию сколько угодно элементов — используйте kwargs
Если при разработке программы нужно выполнить несколько похожих действий, то лучшее решение — определить функции для многоразового использования кода. Для этого вызовите функцию с аргументом. Но что делать, если аргументы функции определены, а вам нужно передать больше значений? Для этого можно использовать kwargs — функции для именованных аргументов.
Этот инструмент очень пригодится для создания функции только с именованными аргументами. Это даст возможность (или, скорее, обяжет) использовать такие функции более прозрачно:
Как видно из примера, задачу легко решить, если поместить аргумент * перед ключевыми словами. И, конечно, можно использовать позиционные аргументы, если вставить их до аргумента *.
Используйте объекты, которые поддерживают оператор with
Открыть файл и заблокировать фрагмент кода можно с помощью оператора with, но можно ли сделать это, пользуясь собственным методом? Да, можно реализовать протокол context manager, используя методы __enter__ и __exit__:
Это распространённый вариант управления контекстом в Python, но есть и более простой способ:
Этот фрагмент кода реализует протокол управления контекстом, используя декоратор менеджера contextmanager. Первая часть функции tag (до yield) выполняется при входе в блок with, затем исполняется блок, а после него и остальная часть функции tag.
Сохраните всё с помощью __slots__
Если программа создаёт большое количество инстансов какого-либо класса, то она может потребовать больше памяти. Это связано с тем, что Python использует словари для представления атрибутов инстансов классов. Это делает язык быстрым, но не очень эффективным с точки зрения оптимизации памяти. Если это становится проблемой, то поможет функция __slots__:
При определении атрибута __slots__ Python использует небольшой массив фиксированного размера для атрибутов вместо словаря. Это значительно сокращает объём памяти, необходимый для каждого инстанса.
Следует учесть, что в этом случае есть и недостатки: нельзя объявлять какие-либо новые атрибуты помимо используемых в __slots__, а классы со __slots__ не могут использовать множественное наследование.
Ограничьте использование процессора и памяти
Если вы не хотите оптимизировать память вашей программы или корректировать работу процессора, то можно просто установить лимиты. К счастью, в Python для этого есть специальная библиотека:
Здесь можно увидеть две опции: установку на максимальное процессорное время и максимальный предел используемой памяти.
При ограничении работы процессора установите мягкий и жёсткий лимиты для конкретного ресурса (RLIMIT_CPU), а затем установите его значение. Для этого используется количество секунд, указанное в аргументе, и ранее полученное жёсткое ограничение. В конце пропишите регистрацию сигнала, который отвечает за выход из системы, если процессорное время превышено.
Что касается памяти, то, как и в случае с процессором, устанавливаем мягкий и жёсткий лимиты. Для этого используйте setrlimit с аргументом размера и извлеките жёсткое ограничение.
Управляйте экспортом элементов
Такие языки программирования, как Go, имеют механизм экспорта только для элементов (переменных, методов, интерфейсов) начинающихся с заглавной буквы. В Python подобного можно добиться с помощью переменной __all__:
В данном случае, благодаря __all__ экспортирован будет не весь код, а только функция __bar__. Кроме того, можно оставить переменную пустой, и ничего не попадёт в экспорт, что приведёт к ошибке AttributeError при попытке импорта из этого модуля.
Упростите использование операторов сравнения
Использовать все операторы сравнения для одного класса может быть довольно сложно, учитывая, что их немало: __It__, __le__, __gt__ или __ge__. Но есть ли более простой способ сделать это? Здесь поможет functools.total.ordering:
Как это работает? Декоратор total_ordering автоматически добавляет все остальные методы. В этом случае нужно только определить __It__ и __eq__, а все остальные пробелы за нас заполнит декоратор.
Заключение
Если для решения задачи требуются новые инструменты, то самое лучшее решение — начать с изучения стандартной библиотеки Python. Именно она даёт все те возможности, о которых говорится выше. Их нельзя назвать обязательными, но рано или поздно они помогут вам в решении самых разных задач.