кем был открыт генетический код

Раньше жизнь была проще: как появился генетический код

Загадка происхождения жизни — один из самых жгучих вопросов, стоящих перед наукой. Пока ответ не найден, все успехи человечества в решении прикладных медицинских или биологических задач можно сравнить с попытками туземцев, никогда раньше не видевших самолетов, научиться пилотировать свалившийся на них с неба боинг. Тем не менее поиски ответа продолжаются. И хотя число ученых, сражающихся на этом фронте, в десятки раз меньше, чем занятых, к примеру, небольшими усовершенствованиями системы редактирования генов CRISPR, каждое их достижение удостаивается немедленного внимания научной общественности. А тем более если речь идет ни много ни мало о загадке происхождения генетического кода. В статье Чарльза Картера и Питера Уиллса, опубликованной в этом месяце в журнале Nucleic Acid Research, речь как раз об этом.

Два профессора — один из США, другой из Новой Зеландии — проанализировали взаимодействие частей механизма, обеспечивающего включение правильных аминокислот в растущую белковую цепь. Механизм этот настолько хитроумен, что отрицатели эволюционной теории нередко использовали его как пример «неустранимой сложности» — такого элемента живой природы, который якобы никак не мог возникнуть путем постепенных усовершенствований, потому что малейшее упрощение тут же лишает всю эту конструкцию смысла. Задача профессоров Уиллса и Картера в том и состояла, чтобы предложить разумную гипотезу, объясняющую, от каких простых предшественников могла эволюционировать эта изумительно сложная система.

Механизм трансляции — именно так называется эта система — призван переводить информацию, записанную в гене алфавитом из «букв»-нуклеотидов, в последовательность аминокислот — единиц строения белков. Ключевую роль в этом переводе играет тРНК. Эта довольно большая молекула на одном конце имеет три «буквы», узнающие соответствующий им кусочек гена (вернее, считанной с него мРНК). На другой конец молекулы — «акцепторный стебель» — в нужный момент навешивается соответствующая аминокислота. Аминокислот, как известно, существует двадцать, тРНК еще больше, и для каждой пары тРНК и аминокислоты есть своя «машинка», которая их соединяет, под названием «аминоацил-тРНК-синтетаза» (ААРС).

Все эти «машинки» различаются в деталях, но несколько десятилетий назад биологи заметили, что некоторые из них чуть больше похожи друг на друга. А именно, 20 ААРС распадаются на два класса, по десять «машинок» в каждом, причем эти классы устроены принципиально по-разному. Ранее Картер и Уиллс нашли убедительные доказательства, что каждый класс произошел от одного белка-предка. Классы ААРС различаются еще и тем, какие аминокислоты они предпочитают: первому классу обычно нравятся более крупные аминокислоты, второму — небольшие и электрически нейтральные.

Если два разных класса «машинок»-белков распознают два разных класса аминокислот, то довольно естественно предположить, что и тРНК должны разделяться на два класса, восходящие каждый к своему предку. Именно это и продемонстрировали Уиллс и Картер в своей статье.

Авторы сравнивают свою находку с палимпсестом, на котором реставраторам удалось восстановить под наслоениями содержание самой первой записи.

Оказалось, что всего три нуклеотида на «акцепторном стебле» хранят информацию о том, к какому классу относится та или иная тРНК. Этот недостающий фрагмент пазла и искали Картер и Уиллс, чтобы подтвердить свою гипотезу. Она состоит в том, что в самом начале развития жизни существовало всего два типа тРНК, обслуживаемые всего двумя типами машинок ААРС. Такая система была не слишком разборчивой и могла лишь определить, включать ли в белковую цепь аминокислоту покрупнее или обойтись маленькой. Возможно, что и выбор аминокислот в те времена был более скуден, чем сегодня, и даже не исключено, что их было в наличии всего две (а если их было больше, то точный выбор, вероятно, не имел большого значения для работы тех примитивных белков-катализаторов). Согласно гипотезе Картера и Уилса, именно из такой несложной системы развился сложнейший аппарат белкового синтеза, украшающий сегодня все формы жизни, от бактерий до человека.

Приятным сюрпризом для исследователей стало еще одно наблюдение, отвечающее на вопрос, мучающий молекулярных биологов уже три десятилетия. Как ужу было сказано, тРНК — довольно большая молекула, и если «машинка» ААРС возится в основном в районе «акцепторного стебля», то распознавание информации, записанной в гене, происходит довольно далеко оттуда (эта часть молекулы называется «антикодоном»). Чтобы объяснить, как такая конструкция могла возникнуть в эволюции, ученым приходилось предполагать, что миллиарды лет назад, когда элементы жизни только начинали оформляться, тРНК были гораздо меньше. При таких условиях ААРС могли бы узнавать тот же самый участок тРНК, что отвечал за ее специфичность, то есть содержал «кодовое слово», соответствующее информации в гене.

Ни малейших доказательств этой гипотезы найти не удавалось. Однако из анализа, проведенного Картером и Уиллсом, следует, что одна из трех обнаруженных ими «букв», определяющих разделение тРНК на два класса (а именно, нуклеотид номер два), как раз и есть остаток того самого древнего антикодона. В ходе дальнейшей эволюции эта функция переместилась на новое место, однако следы старого местоположения удается обнаружить. Авторы сравнивают свою находку с палимпсестом — древним пергаментом, на котором старый текст был заменен на новый, однако реставраторам удалось восстановить под наслоениями содержание той самой первой записи.

При всей серьезности результатов Уиллса и Картера они не ставят точку в истории происхождения генетического кода. Тем не менее круг возможных гипотез удалось сильно сузить. Чтобы доказать правильность гипотезы, исследователи могли бы попробовать воспроизвести архаичную систему трансляции в лаборатории. Потом, возможно, они позволили бы ей эволюционировать и с изумлением наблюдали бы, как на их глазах из этой примитивной химии вырастает «неустранимая сложность» современных живых систем. То, что возможности молекулярной биологии пока не позволяют проделать этот опыт, не означает, что он не будет поставлен никогда: человеческим возможностям свойственно расширяться.

Источник

ДНК: история одной макромолекулы

25 апреля – День ДНК!

Открытие ДНК произошло в 1869 году швейцарским биохимиком Фридрихом Мишером, но потребовалось более 80 лет, чтобы важность этого открытия была полностью осознана. И даже сегодня, по прошествии более 150 лет, новые исследования и технологии продолжают предлагать более глубокое понимание вопроса: почему важна ДНК?

Наследственный материал человека, известный как дезоксирибонуклеиновая кислота, или ДНК, представляет собой длинную молекулу, содержащую информацию, необходимую организму для развития и размножения. ДНК находится в каждой клетке тела и передается от родителя к ребенку.

ДНК является самовоспроизводящимся материалом, который есть в каждом живом организме. Проще говоря, это носитель всей генетической информации. Он содержит своеобразные инструкции, необходимые организму для развития, роста, размножения. Это одна длинная молекула, которая содержит наш генетический «код». Этот «код» является отправной точкой для нашего развития, но влияние внешних факторов, таких как наш образ жизни, окружающая среда и питание, в конечном итоге формируют человека.

Из чего состоит ДНК?

кем был открыт генетический код. 35aa181334bc2f9e75e59a9de02ba26f. кем был открыт генетический код фото. кем был открыт генетический код-35aa181334bc2f9e75e59a9de02ba26f. картинка кем был открыт генетический код. картинка 35aa181334bc2f9e75e59a9de02ba26f. Загадка происхождения жизни — один из самых жгучих вопросов, стоящих перед наукой. Пока ответ не найден, все успехи человечества в решении прикладных медицинских или биологических задач можно сравнить с попытками туземцев, никогда раньше не видевших самолетов, научиться пилотировать свалившийся на них с неба боинг. Тем не менее поиски ответа продолжаются. И хотя число ученых, сражающихся на этом фронте, в десятки раз меньше, чем занятых, к примеру, небольшими усовершенствованиями системы редактирования генов CRISPR, каждое их достижение удостаивается немедленного внимания научной общественности. А тем более если речь идет ни много ни мало о загадке происхождения генетического кода. В статье Чарльза Картера и Питера Уиллса, опубликованной в этом месяце в журнале Nucleic Acid Research, речь как раз об этом.

ДНК человека уникальна тем, что состоит из почти 3 миллиардов пар оснований, и около 99 процентов из них одинаковы для каждого человека. Тем не менее, именно последовательность этих оснований определяет, каким будет этот организм.

Подумайте о ДНК как об отдельных буквах алфавита — буквы объединяются друг с другом в определенном порядке, образуя слова, предложения и истории. Та же самая идея верна для ДНК: то, как азотистые основания упорядочены в последовательностях ДНК, формирует гены, которые «говорят» вашим клеткам, как производить белки. Рибонуклеиновая кислота (РНК), другой тип нуклеиновой кислоты, образуется в процессе транскрипции (при репликации ДНК). Функция РНК заключается в том, чтобы транслировать генетическую информацию из ДНК в белки, когда она декодируется рибосомой.

ДНК содержит жизненно важную информацию, которая передается из поколения в поколение. Молекулы ДНК в ядре клетки плотно обвиваются, образуя хромосомы, которые помогают хранить важную информацию в виде генов.

ДНК работает путем копирования себя в эту одноцепочечную молекулу под названием РНК. РНК похожа на ДНК, но она содержит некоторые существенные молекулярные различия, которые выделяют ее. РНК действует как посланник, передавая жизненно важную генетическую информацию в клетке от ДНК через рибосомы для создания белков, которые затем образуют все живое.

Как была обнаружена ДНК?

Кто открыл ДНК?

Полный ответ на вопрос, кто открыл ДНК, сложен, потому что, по правде говоря, многие люди внесли свой вклад в то, что мы знаем об этом сейчас.

1866 — Грегор Мендель, известный как «Отец генетики», был фактически первым, кто предположил, что характеристики передаются из поколения в поколение. Мендель обосновал термины, которые мы все знаем сегодня: рецессивные и доминирующие признаки.

1869 — Фридрих Мишер идентифицировал «нуклеин», выделив молекулу из ядра клетки, которая впоследствии стала известна как ДНК.

1881 — лауреат Нобелевской премии немецкий биохимик Альбрехт Коссель, которому приписывают наименование ДНК, идентифицировал нуклеин как нуклеиновую кислоту. Он также выделил те пять азотистых оснований, которые в настоящее время считаются основными строительными блоками ДНК и РНК: аденин (A), цитозин ©, гуанин (G) и тимин (T) (который заменяется урацилом (U). ) в РНК).

1882 — Вскоре после открытия Косселя Вальтер Флемминг обнаружил митоз в 1882 году, став первым биологом, который выполнил полностью систематическое исследование деления хромосом. Его наблюдения, что хромосомы удваиваются, важны для позже обнаруженной теории наследования.

Начало 1900-х годов — Теодор Бовери и Уолтер Саттон независимо работали над тем, что сейчас известно как теория хромосом Бовери-Саттона или хромосомная теория наследования. Их выводы являются основополагающими в нашем понимании того, как хромосомы переносят генетический материал и передают его из поколения в поколение.

1944 — Освальд Эвери обосновал, что ДНК, а не белки, трансформируют свойства клеток.

1944 — 1950 — Эрвин Чаргафф обнаружил, что ДНК отвечает за наследственность. Его открытия, известные как «Правила Чаргаффа», доказали, что единицы гуанина и цитозина, а также единицы аденина и тимина одинаковы в двухцепочечной ДНК, и он также обнаружил, что ДНК различается у разных видов.

1951 — работа Розалинд Франклин доказала спиральную форму ДНК, что было подтверждено Уотсоном и Криком почти два года спустя. Ее выводы были признаны только посмертно.

25 апреля 1953 — Уотсон и Крик, опираясь на достижения Чаргаффа и Франклин, опубликовали структуру двойной спирали ДНК. Этот день во всем мире отмечается как день ДНК.

Источник

Код ДНК. Какие тайны скрывает главная молекула

кем был открыт генетический код. . кем был открыт генетический код фото. кем был открыт генетический код-. картинка кем был открыт генетический код. картинка . Загадка происхождения жизни — один из самых жгучих вопросов, стоящих перед наукой. Пока ответ не найден, все успехи человечества в решении прикладных медицинских или биологических задач можно сравнить с попытками туземцев, никогда раньше не видевших самолетов, научиться пилотировать свалившийся на них с неба боинг. Тем не менее поиски ответа продолжаются. И хотя число ученых, сражающихся на этом фронте, в десятки раз меньше, чем занятых, к примеру, небольшими усовершенствованиями системы редактирования генов CRISPR, каждое их достижение удостаивается немедленного внимания научной общественности. А тем более если речь идет ни много ни мало о загадке происхождения генетического кода. В статье Чарльза Картера и Питера Уиллса, опубликованной в этом месяце в журнале Nucleic Acid Research, речь как раз об этом.

МОСКВА, 25 апр — РИА Новости, Татьяна Пичугина. Ровно 65 лет назад британские ученые Джеймс Уотсон и Фрэнсис Крик опубликовали статью о расшифровке структуры ДНК, заложив основы новой науки — молекулярной биологии. Это открытие изменило очень многое в жизни человечества. РИА Новости рассказывает о свойствах молекулы ДНК и о том, почему она так важна.

кем был открыт генетический код. . кем был открыт генетический код фото. кем был открыт генетический код-. картинка кем был открыт генетический код. картинка . Загадка происхождения жизни — один из самых жгучих вопросов, стоящих перед наукой. Пока ответ не найден, все успехи человечества в решении прикладных медицинских или биологических задач можно сравнить с попытками туземцев, никогда раньше не видевших самолетов, научиться пилотировать свалившийся на них с неба боинг. Тем не менее поиски ответа продолжаются. И хотя число ученых, сражающихся на этом фронте, в десятки раз меньше, чем занятых, к примеру, небольшими усовершенствованиями системы редактирования генов CRISPR, каждое их достижение удостаивается немедленного внимания научной общественности. А тем более если речь идет ни много ни мало о загадке происхождения генетического кода. В статье Чарльза Картера и Питера Уиллса, опубликованной в этом месяце в журнале Nucleic Acid Research, речь как раз об этом.

Во второй половине XIX века биология была совсем молодой наукой. Ученые только приступали к исследованию клетки, а представления о наследственности, хотя и были уже сформулированы Грегором Менделем, не получили широкого признания.

Весной 1868 года молодой швейцарский врач Фридрих Мишер приехал в Университет города Тюбингена (Германия), чтобы заняться научной работой. Он намеревался узнать, из каких веществ состоит клетка. Для экспериментов выбрал лейкоциты, которые легко получить из гноя.

Отделяя ядро от протоплазмы, белков и жиров, Мишер обнаружил соединение с большим содержанием фосфора. Он назвал эту молекулу нуклеином («нуклеус» на латыни — ядро).

Это соединение проявляло кислотные свойства, поэтому возник термин «нуклеиновая кислота». Его приставка «дезоксирибо» означает, что молекула содержит H-группы и сахара. Потом выяснилось, что на самом деле это соль, но название менять не стали.

В начале XX века ученые уже знали, что нуклеин представляет собой полимер (то есть очень длинную гибкую молекулу из повторяющихся звеньев), звенья сложены четырьмя азотистыми основаниями (аденином, тимином, гуанином и цитозином), а нуклеин содержится в хромосомах — компактных структурах, которые возникают в делящихся клетках. Их способность передавать наследственные признаки продемонстрировал американский генетик Томас Морган в опытах на дрозофилах.

кем был открыт генетический код. . кем был открыт генетический код фото. кем был открыт генетический код-. картинка кем был открыт генетический код. картинка . Загадка происхождения жизни — один из самых жгучих вопросов, стоящих перед наукой. Пока ответ не найден, все успехи человечества в решении прикладных медицинских или биологических задач можно сравнить с попытками туземцев, никогда раньше не видевших самолетов, научиться пилотировать свалившийся на них с неба боинг. Тем не менее поиски ответа продолжаются. И хотя число ученых, сражающихся на этом фронте, в десятки раз меньше, чем занятых, к примеру, небольшими усовершенствованиями системы редактирования генов CRISPR, каждое их достижение удостаивается немедленного внимания научной общественности. А тем более если речь идет ни много ни мало о загадке происхождения генетического кода. В статье Чарльза Картера и Питера Уиллса, опубликованной в этом месяце в журнале Nucleic Acid Research, речь как раз об этом.

Модель, объяснившая гены

А вот что делает в ядре клетки дезоксирибонуклеиновая кислота, сокращенно ДНК, долго не понимали. Считалось, что она играет какую-то структурную роль в хромосомах. Единицам наследственности — генам — приписывали белковую природу. Прорыв совершил американский исследователь Освальд Эвери, опытным путем доказавший, что генетический материал передается от бактерии к бактерии посредством ДНК.

кем был открыт генетический код. . кем был открыт генетический код фото. кем был открыт генетический код-. картинка кем был открыт генетический код. картинка . Загадка происхождения жизни — один из самых жгучих вопросов, стоящих перед наукой. Пока ответ не найден, все успехи человечества в решении прикладных медицинских или биологических задач можно сравнить с попытками туземцев, никогда раньше не видевших самолетов, научиться пилотировать свалившийся на них с неба боинг. Тем не менее поиски ответа продолжаются. И хотя число ученых, сражающихся на этом фронте, в десятки раз меньше, чем занятых, к примеру, небольшими усовершенствованиями системы редактирования генов CRISPR, каждое их достижение удостаивается немедленного внимания научной общественности. А тем более если речь идет ни много ни мало о загадке происхождения генетического кода. В статье Чарльза Картера и Питера Уиллса, опубликованной в этом месяце в журнале Nucleic Acid Research, речь как раз об этом.

Стало ясно, что ДНК нужно изучать. Но как? В то время ученым был доступен только рентген. Чтобы просвечивать им биологические молекулы, их приходилось кристаллизовать, а это сложно. Расшифровкой структуры белковых молекул по рентгенограммам занимались в Кавендишской лаборатории (Кембридж, Великобритания). Работавшие там молодые исследователи Джеймс Уотсон и Френсис Крик не располагали собственными экспериментальными данными по ДНК, поэтому они воспользовались рентгенограммами коллег из Королевского колледжа Мориса Уилкинса и Розалинды Франклин.

Уотсон и Крик предложили модель структуры ДНК, точно соответствующую рентгенограммам: две параллельные цепочки закручены в правую спираль. Каждая цепочка складывается произвольным набором азотистых оснований, нанизанных на остов их сахаров и фосфатов, и удерживается водородными связями, протянутыми между основаниями. Причем аденин соединяется только с тимином, а гуанин — с цитозином. Это правило называют принципом комплементарности.

Модель Уотсона и Крика объясняла четыре главных функции ДНК: репликацию генетического материала, его специфику, хранение информации в молекуле и ее способность мутировать.

Ученые опубликовали свое открытие в журнале Nature 25 апреля 1953 года. Через десять лет им вместе с Морисом Уилкинсом присудили Нобелевскую премию по биологии (Розалинда Франклин скончалась в 1958 году от рака в возрасте 37 лет).

«Теперь, более полувека спустя, можно констатировать, что открытие структуры ДНК сыграло в развитии биологии такую же роль, как в физике — открытие атомного ядра. Выяснение строения атома привело к рождению новой, квантовой физики, а открытие строения ДНК привело к рождению новой, молекулярной биологии», — пишет Максим Франк-Каменецкий, выдающийся генетик, исследователь ДНК, автор книги «Самая главная молекула».

кем был открыт генетический код. . кем был открыт генетический код фото. кем был открыт генетический код-. картинка кем был открыт генетический код. картинка . Загадка происхождения жизни — один из самых жгучих вопросов, стоящих перед наукой. Пока ответ не найден, все успехи человечества в решении прикладных медицинских или биологических задач можно сравнить с попытками туземцев, никогда раньше не видевших самолетов, научиться пилотировать свалившийся на них с неба боинг. Тем не менее поиски ответа продолжаются. И хотя число ученых, сражающихся на этом фронте, в десятки раз меньше, чем занятых, к примеру, небольшими усовершенствованиями системы редактирования генов CRISPR, каждое их достижение удостаивается немедленного внимания научной общественности. А тем более если речь идет ни много ни мало о загадке происхождения генетического кода. В статье Чарльза Картера и Питера Уиллса, опубликованной в этом месяце в журнале Nucleic Acid Research, речь как раз об этом.

Генетический код

Теперь оставалось узнать, как эта молекула действует. Было известно, что ДНК содержит инструкции для синтеза клеточных белков, которые выполняют всю работу в клетке. Белки — это полимеры, состоящие из повторяющихся наборов (последовательностей) аминокислот. Причем аминокислот — всего двадцать. Виды животных отличаются друг от друга набором белков в клетках, то есть разными последовательностями аминокислот. Генетика утверждала, что эти последовательности задаются генами, которые, как тогда считали, служат первокирпичиками жизни. Но что такое гены, никто в точности не представлял.

Ясность внес автор теории Большого взрыва физик Георгий Гамов, сотрудник Университета Джорджа Вашингтона (США). Основываясь на модели двухцепочечной спирали ДНК Уотсона и Крика, он предположил, что ген — это участок ДНК, то есть некая последовательность звеньев — нуклеотидов. Поскольку каждый нуклеотид — это одно из четырех азотистых оснований, то нужно просто выяснить, как четыре элемента кодируют двадцать. В этом состояла идея генетического кода.

К началу 1960-х установили, что белки синтезируются из аминокислот в рибосомах — своего рода «фабриках» внутри клетки. Чтобы приступить к синтезу белка, к ДНК приближается фермент, распознает определенный участок в начале гена, синтезирует копию гена в виде маленькой РНК (ее называют матричной), затем уже в рибосоме из аминокислот выращивается белок.

Выяснили также, что генетический код — трехбуквенный. Это значит, что одной аминокислоте соответствуют три нуклеотида. Единицу кода назвали кодоном. В рибосоме информация с мРНК считывается кодон за кодоном, последовательно. И каждому из них соответствует несколько аминокислот. Как же выглядит шифр?

кем был открыт генетический код. . кем был открыт генетический код фото. кем был открыт генетический код-. картинка кем был открыт генетический код. картинка . Загадка происхождения жизни — один из самых жгучих вопросов, стоящих перед наукой. Пока ответ не найден, все успехи человечества в решении прикладных медицинских или биологических задач можно сравнить с попытками туземцев, никогда раньше не видевших самолетов, научиться пилотировать свалившийся на них с неба боинг. Тем не менее поиски ответа продолжаются. И хотя число ученых, сражающихся на этом фронте, в десятки раз меньше, чем занятых, к примеру, небольшими усовершенствованиями системы редактирования генов CRISPR, каждое их достижение удостаивается немедленного внимания научной общественности. А тем более если речь идет ни много ни мало о загадке происхождения генетического кода. В статье Чарльза Картера и Питера Уиллса, опубликованной в этом месяце в журнале Nucleic Acid Research, речь как раз об этом.

На этот вопрос ответили Маршалл Ниренберг и Генрих Маттеи из США. В 1961 году они впервые доложили свои результаты на биохимическом конгрессе в Москве. К 1967-му генетический код полностью расшифровали. Он оказался универсальным для всех клеток всех организмов, что имело далеко идущие последствия для науки.

Открытие структуры ДНК и генетического кода полностью переориентировало биологические исследования. То, что у каждого индивида уникальная последовательность ДНК, кардинально изменило криминалистику. Расшифровка генома человека дала антропологам совершенно новый метод изучения эволюции нашего вида. Недавно изобретенный редактор ДНК CRISPR-Cas позволил сильно продвинуть вперед генную инженерию. По всей видимости, в этой молекуле хранится решение и самых злободневных проблем человечества: рака, генетических заболеваний, старения.

Источник

Генетический код

Три пары оснований молекулы ДНК кодируют одну аминокислоту в белке.

Сегодня ни для кого не секрет, что программа жизнедеятельности всех живых организмов записана на молекуле ДНК. Проще всего представить молекулу ДНК в виде длинной лестницы. Вертикальные стойки этой лестницы состоят из молекул сахара, кислорода и фосфора. Вся важная рабочая информация в молекуле записана на перекладинах лестницы — они состоят из двух молекул, каждая из которых крепится к одной из вертикальных стоек. Эти молекулы — азотистые основания — называются аденин, гуанин, тимин и цитозин, но обычно их обозначают просто буквами А, Г, Т и Ц. Форма этих молекул позволяет им образовывать связи — законченные ступеньки — лишь определенного типа. Это связи между основаниями А и Т и между основаниями Г и Ц (образованную таким образом пару называют «парой оснований»). Других типов связи в молекуле ДНК быть не может.

Спускаясь по ступенькам вдоль одной цепи молекулы ДНК, вы получите последовательность оснований. Именно это сообщение в виде последовательности оснований и определяет поток химических реакций в клетке и, следовательно, особенности организма, обладающего данной ДНК. Согласно центральной догме молекулярной биологии, на молекуле ДНК закодирована информация о белках, которые, в свою очередь, выступая в роли ферментов (см. Катализаторы и ферменты), регулируют все химические реакции в живых организмах.

Строгое соответствие между последовательностью пар оснований в молекуле ДНК и последовательностью аминокислот, составляющих белковые ферменты, называется генетическим кодом. Генетический код был расшифрован вскоре после открытия двуспиральной структуры ДНК. Было известно, что недавно открытая молекула информационной, или матричной РНК (иРНК, или мРНК), несет информацию, записанную на ДНК. Биохимики Маршалл Уоррен Ниренберг (Marshall W. Nirenberg) и Дж. Генрих Маттеи (J. Heinrich Matthaei) из Национального института здравоохранения в городке Бетезда под Вашингтоном, округ Колумбия, поставили первые эксперименты, которые привели к разгадке генетического кода.

Они начали с того, что синтезировали искусственные молекулы иРНК, состоявшие только из повторяющегося азотистого основания урацила (который является аналогом тимина, «Т», и образует связи только с аденином, «А», из молекулы ДНК). Они добавляли эти иРНК в тестовые пробирки со смесью аминокислот, причем в каждой пробирке лишь одна из аминокислот была помечена радиоактивной меткой. Исследователи обнаружили, что искусственно синтезированная ими иРНК инициировала образование белка лишь в одной пробирке, где находилась меченая аминокислота фенилаланин. Так они установили, что последовательность «—У—У—У—» на молекуле иРНК (и, следовательно, эквивалентную ей последовательность «—А—А—А—» на молекуле ДНК) кодирует белок, состоящий только из аминокислоты фенилаланина. Это было первым шагом к расшифровке генетического кода.

Сегодня известно, что три пары оснований молекулы ДНК (такой триплет получил название кодон) кодируют одну аминокислоту в белке. Выполняя эксперименты, аналогичные описанному выше, генетики в конце концов расшифровали весь генетический код, в котором каждому из 64 возможных кодонов соответствует определенная аминокислота.

Источник

У истоков генетического кода: родственные души

Таблица генетического кода

Автор
Редакторы

Статья на конкурс «био/мол/текст»: Границы между науками — штука эфемерная. Биология прорастает из химии; физика неразрывно связана с математикой; палеонтология, геология, география, история в тесном сотрудничестве описывают события прежних веков. Огромные массивы биологических данных, полученных с помощью новейших методик исследования, обрабатываются с помощью биоинформатики. И даже такие непохожие науки, как молекулярная биология и лингвистика тоже имеют точки соприкосновения. Не верите? Ну прочитайте статью.

кем был открыт генетический код. af32f9566d455592bd9b4b3100f285ec. кем был открыт генетический код фото. кем был открыт генетический код-af32f9566d455592bd9b4b3100f285ec. картинка кем был открыт генетический код. картинка af32f9566d455592bd9b4b3100f285ec. Загадка происхождения жизни — один из самых жгучих вопросов, стоящих перед наукой. Пока ответ не найден, все успехи человечества в решении прикладных медицинских или биологических задач можно сравнить с попытками туземцев, никогда раньше не видевших самолетов, научиться пилотировать свалившийся на них с неба боинг. Тем не менее поиски ответа продолжаются. И хотя число ученых, сражающихся на этом фронте, в десятки раз меньше, чем занятых, к примеру, небольшими усовершенствованиями системы редактирования генов CRISPR, каждое их достижение удостаивается немедленного внимания научной общественности. А тем более если речь идет ни много ни мало о загадке происхождения генетического кода. В статье Чарльза Картера и Питера Уиллса, опубликованной в этом месяце в журнале Nucleic Acid Research, речь как раз об этом.

Конкурс «био/мол/текст»-2014

Эта статья представлена на конкурс научно-популярных работ «био/мол/текст»-2014 в номинации «Биоинформатика и молекулярная эволюция».

кем был открыт генетический код. Genotek. кем был открыт генетический код фото. кем был открыт генетический код-Genotek. картинка кем был открыт генетический код. картинка Genotek. Загадка происхождения жизни — один из самых жгучих вопросов, стоящих перед наукой. Пока ответ не найден, все успехи человечества в решении прикладных медицинских или биологических задач можно сравнить с попытками туземцев, никогда раньше не видевших самолетов, научиться пилотировать свалившийся на них с неба боинг. Тем не менее поиски ответа продолжаются. И хотя число ученых, сражающихся на этом фронте, в десятки раз меньше, чем занятых, к примеру, небольшими усовершенствованиями системы редактирования генов CRISPR, каждое их достижение удостаивается немедленного внимания научной общественности. А тем более если речь идет ни много ни мало о загадке происхождения генетического кода. В статье Чарльза Картера и Питера Уиллса, опубликованной в этом месяце в журнале Nucleic Acid Research, речь как раз об этом.

Главный спонсор конкурса — дальновидная компания Генотек.
Конкурс поддержан ОАО «РВК».

Спонсором номинации «Биоинформатика» является Институт биоинформатики.
Спонсором приза зрительских симпатий выступила фирма Helicon.
Свой приз также вручает Фонд поддержки передовых биотехнологий.

Ну, предположим, мы с вами условимся, что слово «лошадь»
станет для нас означать учебник по грамматике,
тогда мы будем иметь право сказать:
«Откройте вашу лошадь на двадцатой странице» или
«Вы принесли сегодня на занятия свою лошадь?»
И оба прекрасно друг друга поймем, как вы считаете?

Джон Барт. Конец пути

В разных языках одни понятия называются по-разному звучащими словами. По-английски «вода» будет water («вотер»), по-албански — ujë («уё»), по-китайски — 水 («ше»), а по-валлийски — dŵr («дюр»). Наоборот, одинаково звучащее слово в разных языках может означать противоположные вещи: по-русски «яма» — это яма, а по-японски — гора.

Значит, возникновение слова, появление связи между понятием и определяющим его сочетанием звуков или букв — процесс относительно случайный; можно представить, что в русском языке понятие «вода» обозначается словом «соль», «камень», «пиво» или (с большой натяжкой) «аэрофотосъемка».

А теперь посмотрим на генетический код (см. заглавный рисунок). Это тоже язык, только особенный: его буквы —химические соединения, азотистые основания. Этих букв-оснований четыре — гуанин (G), цитозин (C), аденин (A) и урацил (U). Все слова (они называются кодоны) в этом языке трехбуквенные; из четырех букв получается 64 трехбуквенных слова. Эти 64 слова кодируют 21 «понятие»: 20 аминокислот и стоп-кодон. (Очень редко помимо 20 классических аминокислот генетический код кодирует еще две «дополнительных», так что можно сказать, что «понятий» не 21, а 23; но это неважно для нашей истории.)

кем был открыт генетический код. 1442 Fig.01. кем был открыт генетический код фото. кем был открыт генетический код-1442 Fig.01. картинка кем был открыт генетический код. картинка 1442 Fig.01. Загадка происхождения жизни — один из самых жгучих вопросов, стоящих перед наукой. Пока ответ не найден, все успехи человечества в решении прикладных медицинских или биологических задач можно сравнить с попытками туземцев, никогда раньше не видевших самолетов, научиться пилотировать свалившийся на них с неба боинг. Тем не менее поиски ответа продолжаются. И хотя число ученых, сражающихся на этом фронте, в десятки раз меньше, чем занятых, к примеру, небольшими усовершенствованиями системы редактирования генов CRISPR, каждое их достижение удостаивается немедленного внимания научной общественности. А тем более если речь идет ни много ни мало о загадке происхождения генетического кода. В статье Чарльза Картера и Питера Уиллса, опубликованной в этом месяце в журнале Nucleic Acid Research, речь как раз об этом.

Рисунок 1. Химическая структура «букв» (нуклеотидов; сверху) и «понятий» (аминокислот; снизу) генетического кода. Помимо двадцати «классических» аминокислот генетический код крайне редко кодирует еще две, одна из которых (селеноцистеин) показана на этом рисунке.

И тут возникает заковыристый лингвобиологический вопрос. Является ли генетический код таким же произвольным, случайно образовавшимся языком, как языки, на которых говорят люди? Можно ли представить, что кодоны в генетическом коде кодируют другие аминокислоты, а аминокислоты кодируются другими кодонами? Может ли кодон UUU кодировать не фенилаланин (как он это сейчас делает), а глицин? А кодон AGG — тирозин? А кодон CUC — пролин? Иными словами, случайно ли подбирались кодоны, обозначающие аминокислоты, — или в этом был какой-то смысл?

В последующем тексте я попытаюсь ответить на этот вопрос, но вначале покаюсь. Обсуждение исчезающе далекого прошлого — такое же захватывающее и бесполезное занятие, как обсуждение исчезающе далекого будущего. Ни доказать, ни опровергнуть тут ничего нельзя, и то, что описано в этой статье, — всего лишь гипотетический вариант развития событий. И все-таки обсуждение данных вопросов чрезвычайно расширяет кругозор и тренирует мыслительные способности — так что можно расценивать рассуждения на эту тему как экзаптацию, служащую общему развитию человечества. Эта статья во многом основана на лекции заведующего лабораторией компьютерной биофизики Венского университета Бояна Жагровича [1] во время научной школы-конференции «Современная биология & Биотехнологии будущего», посвященной острым вопросам и актуальным проблемам фундаментальной и прикладной биологии, а также на книге Евгения Кунина «Логика случая» [2] (особенно на главе о происхождении жизни).

Once upon a time.

Представим себе мир на заре возникновения жизни. По самой популярной из существующих сейчас теорий это был РНК-мир [3]: РНК были самыми продвинутыми из существовавших тогда биомолекул. Эти примитивные и неуклюжие «первобытные» РНК тогда занимались и хранением информации (чем сейчас занимается в основном ДНК), и катализом биохимических реакций (чем сейчас занимаются в основном белки). В результате РНК способны были самовоспроизводиться: катализировать на основе одной цепочки РНК создание других цепочек, идентичных исходной. Может быть, еще нельзя было назвать эти молекулы живыми, но уже можно было назвать их бессмертными.

Судя по всему, жизнь зародилась в пористой породе, образующей сеть ячеек, через стенки которых затруднена диффузия [4]. В этой породе находился первичный бульон — водный раствор различных веществ, в том числе этих самых коротких цепочек РНК и отдельных аминокислот. Из-за того, что многим молекулам нелегко было пробраться сквозь стенки ячеек, состав ячеек был разным: в одних по каким-то причинам накапливались одни молекулы, а в других — другие. Такие ячейки можно назвать «протоклетками», потому что их стенки выполняли ту же функцию, которую выполняет мембрана у современных клеток: отделение Мира Внутри от Мира Снаружи.

Разрозненные молекулы, в том числе, РНК и аминокислоты, плававшие в первичном бульоне, могли общаться только одним способом — с помощью физико-химических взаимодействий. Растворимость в воде, электрический заряд, пространственные характеристики, некоторые другие свойства — все это заставляет одни молекулы слипаться друг с другом в растворе, а другие — отплывать друг от друга как можно дальше.

И вот представим себе такую романтическую историю. Некий кодон (сочетание из трех нуклеотидов) и некая аминокислота — это «родственные души». Благодаря своим физико-химическим свойствам они крепко слипаются, встретившись в растворе.

Представим себе, что в некой цепочке РНК есть этот кодон. Есть вероятность, что в той неорганической ячейке, где плавает эта РНК, случайно окажется «родная» для кодона аминокислота. И есть вероятность, что эта аминокислота налипнет на свой «родной» кодон. И есть вероятность, что от этого жизнь той РНК существенно облегчится — она станет стабильнее, или будет лучше работать, или приобретет какие-то новые выгодные свойства. В результате такая РНК станет более приспособленной, и отбор (в тогдашней форме этого процесса) будет ей благоволить.

Это объединение двух невидимых глазу молекул, произошедшее в капле воды в крохотной дырочке пористой породы где-то в океане миллиарды лет назад — гигантский прорыв в истории нашей планеты. С этого момента возникает «дружба» между РНК и белками, краеугольный камень жизни на Земле. С этой дружбы началась биологическая эволюция, благодаря которой существуем и мы с вами.

Допустим, пары «родственных душ» существовали и для других кодонов и аминокислот. Тогда могла сложиться ситуация, когда напротив двух расположенных рядом кодонов РНК встанут две «родные» для этих кодонов аминокислоты. А отсюда — один (правда, довольно трудный) шаг до того, чтобы эти аминокислоты соединились, образовав цепочку из двух звеньев. И если связывание между кодоном и аминокислотой достаточно стабильно, то такая ситуация будет повторяться снова и снова на других молекулах РНК. То есть, напротив одних и тех же сочетаний нуклеотидов будут выстраиваться одни и те же аминокислоты, которые, при счастливом стечении обстоятельств, объединятся в цепочки. Вот так, буквально из ничего, возникает «романтическая связь» между кодонами и аминокислотами — генетический код.

Доказательства

Эмпирическим путем было получено несколько доказательств этого предположения. Еще в 1966 году Карл Вёзе [5] показал, что аминокислоты, кодируемые пиримидиновыми кодонами, имеют повышенное сродство к аналогам пиримидина в растворе [6]. А позже в работах лаборатории Бояна Жагровича было обнаружено, что аминокислоты, кодируемые пуриновыми основаниями, имеют повышенное сродство к пуриновому основанию гуанину (но, почему-то, не к аденину) [7], [8]. Иными словами, имеет значение не столько конкретный нуклеотид, сколько его «половая принадлежность» — пуриновость или пиримидиновость (рис. 2).

кем был открыт генетический код. 1442 Fig.02. кем был открыт генетический код фото. кем был открыт генетический код-1442 Fig.02. картинка кем был открыт генетический код. картинка 1442 Fig.02. Загадка происхождения жизни — один из самых жгучих вопросов, стоящих перед наукой. Пока ответ не найден, все успехи человечества в решении прикладных медицинских или биологических задач можно сравнить с попытками туземцев, никогда раньше не видевших самолетов, научиться пилотировать свалившийся на них с неба боинг. Тем не менее поиски ответа продолжаются. И хотя число ученых, сражающихся на этом фронте, в десятки раз меньше, чем занятых, к примеру, небольшими усовершенствованиями системы редактирования генов CRISPR, каждое их достижение удостаивается немедленного внимания научной общественности. А тем более если речь идет ни много ни мало о загадке происхождения генетического кода. В статье Чарльза Картера и Питера Уиллса, опубликованной в этом месяце в журнале Nucleic Acid Research, речь как раз об этом.

Рисунок 2. Зависимость между сродством аминокислоты к аналогам пиримидина в растворе (эмпирическая характеристика под названием polar requirement; подробней о ней рассказано в [9]) и «пиримидиновостью» (дóлей пиримидиновых нуклеотидов) ее кодона. Хотя зависимость не «железная» и исключения налицо, но закономерность явно прослеживается.

Конечно, в таком примитивном виде, без «поддерживающей конструкции» в виде аппарата белкового синтеза, код будет еще очень неточным: легко можно представить себе ситуацию, когда две сходные по свойствам аминокислоты прилипают к одному и тому же кодону. Однако возможно, что в те незапамятные времена еще не требовалась филигранная точность белкового синтеза, и «супружеская измена» (замена одной аминокислоты на другую, обладающую похожими свойствами) несильно меняла свойства тогдашних простейших белковых цепочек.

Шероховатые места

Эту красивую гипотезу омрачает одно обстоятельство. Нить мРНК куда длиннее белковой нити, которую она кодирует. Непонятно, как же куцей аминокислотной цепочке удавалось правильно встать напротив длинной цепочки нуклеотидов. Возможны несколько объяснений.

Во-первых, крайне вероятно, что давным-давно генетический код был не триплетным, а диплетным, и третий нуклеотид в нем появился тогда, когда выросло количество используемых в белках аминокислот (или стала важнее специфичность этих аминокислот). Это предположение подтверждается тем, что часто аминокислота кодируется несколькими альтернативными кодонами, у которых первые два нуклеотида одинаковы, а отличается только последний. Кроме того, когда тРНК распознает свой кодон, самое важное значение имеют первые два нуклеотида, а третий — это уже просто дополнительный «бантик» (см. об этом tRNA wobble). Если предположение о диплетности верно, то соотношение длин нитей мРНК и белка уменьшается, и становится легче представить, как они друг напротив друга устанавливаются.

Во-вторых, цепочка — это сильно сказано. Видимо, во время становления генетического кода речь шла о стабильном присоединении к нужному месту всего одной-двух аминокислот. Удлинение же белковых цепочек шло параллельно с возникновением аппарата белкового синтеза, в том числе рибосомы [10], и проблема несоответствия длин цепочек РНК и белка потеряла свою актуальность.

Дела давно минувших дней

А теперь — небольшое лирическое отступленье о преданьях старины глубокой, порядке возникновения нуклеотидов и некоторых аспектах «дружбы» между РНК и белками.

кем был открыт генетический код. 1442 Fig.03. кем был открыт генетический код фото. кем был открыт генетический код-1442 Fig.03. картинка кем был открыт генетический код. картинка 1442 Fig.03. Загадка происхождения жизни — один из самых жгучих вопросов, стоящих перед наукой. Пока ответ не найден, все успехи человечества в решении прикладных медицинских или биологических задач можно сравнить с попытками туземцев, никогда раньше не видевших самолетов, научиться пилотировать свалившийся на них с неба боинг. Тем не менее поиски ответа продолжаются. И хотя число ученых, сражающихся на этом фронте, в десятки раз меньше, чем занятых, к примеру, небольшими усовершенствованиями системы редактирования генов CRISPR, каждое их достижение удостаивается немедленного внимания научной общественности. А тем более если речь идет ни много ни мало о загадке происхождения генетического кода. В статье Чарльза Картера и Питера Уиллса, опубликованной в этом месяце в журнале Nucleic Acid Research, речь как раз об этом.

Рисунок 3. Первичные аминокислоты (выбраны на основе эксперимента Миллера—Юри, показаны красным) имеют особенно высокое сродство к гуанину и почти не имеют сродства к аденину. Остальные, вторичные, аминокислоты (показаны зеленым) имеют куда меньшее сродство к гуанину и ярко выраженное «антисродство» к аденину. Для цитозина и урацила картина напоминает таковую для гуанина, но не столь выражена. Еще приведены данные для всех аминокислот вообще, без разделения на первичные и вторичные (показаны черным), а также общие данные для пуриновых (PUR) и пиримидиновых (PYR) нуклеотидов. По вертикальной оси — коэффициент корреляции между количеством нуклеотида в кодоне и сродством к этому нуклеотиду соответствующей аминокислоты. Исторически сложилось, что в данном случае отрицательное значение коэффициента свидетельствует о высоком сродстве аминокислоты к нуклеотиду и наоборот.

Все аминокислоты можно разделить на первичные и вторичные. Первичные, или эволюционно древние, можно получить в абиотических условиях, они не требуют сложного синтеза, возможного только в живых системах. Вторичные, или эволюционно юные, без этого синтеза получить практически невозможно. Понятно, что в «первобытных» белках могли использоваться только первичные аминокислоты — потому что вторичным неоткуда было взяться, не было ферментов для их создания. И вот оказывается, что первичные аминокислоты, во-первых, чаще имеют в своих кодонах гуанин и цитозин, а во-вторых — если их имеют, то «гуаниновые» показывают большое (больше, чем аминокислоты в среднем) сродство к гуанину, а «цитозиновые» — к цитозину (рис. 3). Возможно, это говорит о том, что пара гуанин—цитозин эволюционно более древняя, чем аденин—урацил; «доисторические» РНК состояли преимущественно из них и кодировали только простые, первичные аминокислоты. (Гуанин и цитозин при спаривании образуют три водородные связи, а аденин и урацил — две; то есть, ГЦ — это более стабильная пара; видимо, «любовь» древних РНК к паре ГЦ связана именно с этим.) Затем появились пути для синтеза вторичных аминокислот, а одновременно помимо двух «первичных» оснований — гуанина и цитозина — в РНК стали чаще появляться «вторичные» — аденин и урацил; в результате именно «вторичные» основания стали кодировать вторичные аминокислоты.

Есть, кстати, интересная зависимость, касающаяся аденина. Показано, что аминокислоты, в кодонах которых много этого нуклеотида, не просто не имеют к своим кодонам сродства, но наоборот, имеют «антисродство»: отталкиваются от аденинов в растворе. Это может говорить о том, что к тому моменту, как в РНК появилось большое количество аденинов (кодирующих сложные вторичные аминокислоты), физико-химические взаимодействия уже потеряли свое решающее значение для трансляции. Либо, возможно, такие аминокислоты показывали сродство не к кодону своему, а к антикодону.

Если исходить из того, что со временем физико-химические взаимодействия теряли свое значение для стабилизации генетического кода, то можно выстроить нуклеотиды в порядке их появления в РНК. В этом случае самым древним нуклеотидом должен быть гуанин — ведь «его» аминокислоты чувствуют к нему особую близость. Косвенным подтверждением этому может служить то, что глицин — самая примитивная (= самая древняя) из существующих аминокислот — кодируется сочетанием из двух гуанинов и еще одного (любого) нуклеотида.

Эхо древнего мира

А теперь посмотрим на вопрос с другой стороны. С тех пор, как за счет физико-химических взаимодействий возник и оптимизировался генетический код, утекло много воды и сменился не один додекальон поколений клеток. Имеют ли эти взаимодействия значение в жизни современной клетки — или их давно уже «загородили» более сильные и «умные» процессы? Звучит ли в современном мире эхо мира древнего?

Может быть, и звучит. Вот всего несколько ситуаций, в которых могут иметь значение прямые физико-химические взаимодействия между белком и РНК.

Во-первых, саморегуляция синтеза белка. Возможно, что связывание едва синтезированной белковой цепочки с породившей ее мРНК предотвращает дальнейшее связывание этой мРНК с рибосомой — а соответственно, и дальнейший синтез такой же белковой цепочки на основе этой мРНК. Получается отрицательная обратная связь. Синтез белка регулируется автоматически — само наличие продукта выключает производство этого продукта. (Но, разумеется, этот гипотетический механизм отнюдь не отменяет большого количества хорошо доказанных механизмов регулировки белкового синтеза.)

Во-вторых, вирусы. В ком (или в чём?) еще белок так тесно соседствует с нуклеиновой кислотой, от которой берет начало? Возможно, белки налипают на нужные участки РНК в РНК-содержащих вирусах как минимум частично за счет вышеописанных физико-химических взаимодействий.

И, наконец, нуклеопротеины — слипшиеся кусочки нуклеиновой кислоты и белка. К ним относятся, например, бурно изучающиеся сейчас P-тельца (см. P-bodies) — облепленные белками нити мРНК, в которых эта мРНК зачастую подвергается деградации. Возможно, что белки облепляют мРНК в том числе и за счет тех древних, прямых физико-химических взаимодействий. Это особенно интересно потому, что слепляться таким способом будут преимущественно неструктурированные белки и РНК (потому что у структурированных «родственные», слипающиеся области как правило спрятаны внутри молекулы). А именно неструктурированные биомолекулы прежде всего и должны подвергнуться уничтожению.

Итак, каков же ответ на поставленный в начале статьи вопрос? Случайно или неслучайно подбирались кодоны в генетическом коде?

Ответить можно только с оговорками. Общая закономерность проглядывается: между собой соединяются «родственные души». Чем «пиримидиновей» кодон, который кодирует аминокислоту, тем большее сродство эта аминокислота имеет к пиримидинам, чем «пуриновей» — тем охотней аминокислота слипается с пуринами. Однако частности, то, какую именно из «родственных» аминокислот будет кодировать данный кодон, видимо, определялись случайным путем. Не может кодон UUU кодировать глицин — потому что глицин с ним слипаться не будет. Зато он может кодировать что-нибудь «близкое по духу» — лейцин или изолейцин, например.

Мысли в тему

Во всей этой истории есть несколько философских моментов, на которые хочется обратить внимание.

Во-первых, связь между лингвистикой и биологией. При изучении языка можно сделать выводы о происхождении слова, его древности, встречаемости в разные эпохи, изменении значения со временем, не прибегая ни к каким источникам информации, кроме самого языка. Сам язык несет в себе то, что нужно для его изучения. Та же история и с генетическим кодом. И возможно, в исследованиях генетического кода могут пригодиться методы, ныне используемые в лингвистике.

Но, как мы только что выяснили, генетический код, в отличие от человеческого языка, — штука отнюдь не произвольная. Он стал таким, какой есть, не на ровном месте; сами «буквы», в нем используемые (нуклеотиды), своими физико-химическими свойствами неразрывно связаны с «понятиями», которые они определяют (аминокислотами).

И тогда, во-вторых, всплывает еще один философский вопрос: является ли генетический код цифровым или аналоговым?

С одной-то стороны, он, конечно, цифровой — ведь главную информацию несут именно сочетания нуклеотидов, кодоны. Исключительно от последовательности кодонов зависит, какой белок получится на основе РНК. Прочесть эту информацию в клетке просто так невозможно: для этого нужно протянуть всю нить РНК через рибосому и сделать на ее основе белок. Точно так же, как нельзя узнать о том, что происходит в книге, не прочитав ее страницу за страницей.

Но, помимо цифровой, код несет и аналоговую информацию. И чтобы получить эту информацию, клетке никакая рибосома не нужна — информация определяется сама, на основе физико-химических взаимодействий, в которые вступает молекула РНК. Продолжая аналогию — хотя нельзя узнать, что произойдет в книге, не прочтя ее, но сам вид, размер, обложка книги тоже несут какую-то информацию и могут дать подсказки о ее содержимом.

И может быть, описанные в этой задаче закономерности — это только вершина айсберга. Тогда нам предстоит еще многое узнать об аналоговой информации, которую несет генетический код.

Видео. Лекция Бояна Жагровича (Bojan Zagrovic) Computational modeling of biomolecules: goals, achievements and outstanding challenges, прочитанная на Зимней школе «Современная биология & Биотехнологии будущего» (Звенигород, 2014 г.)

Исходно эта статья была опубликована в виде еженедельной задачи по биологии на «Элементах» [11].

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *