код с постоянным весом
Код с постоянным весом
Помехоустойчивое кодирование
Под помехой понимается любое воздействие, накладывающееся на полезный сигнал и затрудняющее его прием. Ниже приведена классификация помех и их источников.
Приведем классификацию помехоустойчивых кодов.
k—число символов в исходной комбинации
r—число контрольных символов
Рис.5.1. Получение (n,k)-кодов.
Коды с обнаружением ошибок
Код с проверкой на четность.
Такой код образуется путем добавления к передаваемой комбинации, состоящей из k информационных символов, одного контрольного символа (0 или 1), так, чтобы общее число единиц в передаваемой комбинации было четным.
Определим, каковы обнаруживающие свойства этого кода. Вероятность Poo обнаружения ошибок будет равна
Так как вероятность ошибок является весьма малой величиной, то можно ограничится
Вероятность появления всевозможных ошибок, как обнаруживаемых так и не обнаруживаемых, равна , где
— вероятность отсутствия искажений в кодовой комбинации. Тогда
.
При передаче большого количества кодовых комбинаций Nk , число кодовых комбинаций, в которых ошибки обнаруживаются, равно:
Общее количество комбинаций с обнаруживаемыми и не обнаруживаемыми ошибками равно
Тогда коэффициент обнаружения Kобн для кода с четной защитой будет равен
Например, для кода с k=5 и вероятностью ошибки коэффициент обнаружения составит
. То есть 90% ошибок обнаруживаем, при этом избыточность будет составлять
или 17%.
Код с постоянным весом.
Этот код содержит постоянное число единиц и нулей. Число кодовых комбинаций составит
Пример 5.2. Коды с двумя единицами из пяти и тремя единицами из семи.
| |
Этот код позволяет обнаруживать любые одиночные ошибки и часть многократных ошибок. Не обнаруживаются этим кодом только ошибки смещения, когда одновременно одна единица переходит в ноль и один ноль переходит в единицу, два ноля и две единицы меняются на обратные символы и т.д.
Рассмотрим код с тремя единицами из семи. Для этого кода возможны смещения трех типов.
Вероятность появления не обнаруживаемых ошибок смещения
, где
Прием инверсного кода осуществляется в два этапа. На первом этапе суммируются единицы в первой основной группе символов. Если число единиц четное, то контрольные символы принимаются без изменения, если нечетное, то контрольные символы инвертируются. На втором этапе контрольные символы суммируются с информационными символами по модулю два. Нулевая сумма говорит об отсутствии ошибок. При ненулевой сумме, принятая комбинация бракуется. Покажем суммирование для принятых комбинаций без ошибок (1,3) и с ошибками (2,4).
Обнаруживающие способности данного кода достаточно велики. Данный код обнаруживает практически любые ошибки, кроме редких ошибок смещения, которые одновременно происходят как среди информационных символов, так и среди соответствующих контрольных. Например, при k=5, n=10 и . Коэффициент обнаружения будет составлять
.
5. Код Грея. Код Грея используется для преобразования угла поворота тела вращения в код. Принцип работы можно представить по рис.5.2. На пластине, которая вращается на валу, сделаны отверстия, через которые может проходить свет. Причём, диск разбит на сектора, в которых и сделаны эти отверстия. При вращении, свет проходит через них, что приводит к срабатыванию фотоприёмников. При снятии информации в виде двоичных кодов может произойти существенная ошибка. Например, возьмем две соседние цифры 7 и 8. Двоичные коды этих цифр отличаются во всех разрядах.
Рис.5.2. Схема съема информации угла поворота вала в код
Код Грея записывается следующим образом
Номер | Код Грея |
0 0 0 0 | |
0 0 0 1 | |
0 0 1 1 | |
0 0 1 0 | |
0 1 1 0 | |
0 1 1 1 | |
0 1 0 1 | |
0 1 0 0 | |
1 1 0 0 | |
1 1 0 1 | |
1 1 1 1 | |
1 1 1 0 | |
1 0 1 0 | |
1 0 1 1 | |
1 0 0 1 | |
1 0 0 0 |
Разряды в коде Грея не имеют постоянного веса. Вес k-разряда определяется следующим образом .
При этом все нечетные единицы, считая слева направо, имеют положительный вес, а все четные единицы отрицательный.
Например,
Непостоянство весов разрядов затрудняет выполнение арифметических операций в коде Грея, поэтому необходимо уметь делать перевод кода Грея в обычный двоичный код и наоборот. Алгоритм перевода чисел можно представить следующим образом.
Пусть — двоичный код,
— код Грея
Тогда переход из двоичного кода в код Грея выполнится по следующему алгоритму
Например, .
Обратный переход из кода Грея в двоичный код
Например, .
Корректирующие коды
Корректирующими называются коды позволяющие обнаруживать и исправлять ошибки. Идею представления корректирующих кодов можно представить с помощью N-мерного куба. Возьмем трехмерный куб (рис.5.3), длина ребер, в котором равна одной единице. Вершины такого куба отображают двоичные коды. Минимальное расстояние между вершинами определяется минимальным количеством ребер, находящихся между вершинами. Это расстояние называется кодовым (или хэмминговым) и обозначается буквой d.
Рис.5.3. Представление двоичных кодов с помощью куба
определим, что расстояние между ними d=7.
Для кода с N=3 восемь кодовых комбинаций размещаются на вершинах трехмерного куба. Такой код имеет кодовое расстояние d=1, и для передачи используются все восемь кодовых комбинаций 000,001. 111. Такой код является не помехоустойчивым, он не в состоянии обнаружить ошибку.
Любая одиночная ошибка приводит к тому, что разрешенная комбинация переходит в ближайшую, запрещенную комбинацию (см. рис.5.3). Получив запрещенную комбинацию, мы обнаружим ошибку. Выберем далее вершины с кодовым расстоянием d=3
Пример 5.3. Ниже приведены кодовые комбинации, являющиеся группой или нет.
1) 1101 1110 0111 1011 – не группа, так как нет нулевого элемента
2) 0000 1101 1110 0111 – не группа, так как не соблюдается условие замкнутости (1101+1110=0011)
Для построения кода способного обнаруживать и исправлять одиночную ошибку необходимое число контрольных разрядов будет составлять
. Это равносильно известной задаче о минимуме числа контрольных вопросов, на которые могут быть даны ответы вида “да” или “нет”, для однозначного определения одного из элементов конечного множества.
Если необходимо исправить две ошибки, то число различных исходов будет составлять Тогда
, в этом случае обнаруживаются однократные и двукратные ошибки. В общем случае, число контрольных символов должно быть не меньше
(5.1)
Эта формула называется неравенством Хэмминга, или нижней границей Хэмминга для числа контрольных символов.
Код Хэмминга
Рассмотрим Построение кода Хэмминга для k=4 символам. Число контрольных символов r=n-k можно определить по неравенству Хэмминга для однократной ошибки. Но так, как нам известно, только исходное число символов k, то проще вычислить по эмпирической формуле
, (5.2)
Контрольные символы ej определим по формуле . Например,
. Для простоты оставляем только слагаемые с единичными коэффициентами. В результате получим систему линейных уравнений, с помощью которых вычисляются контрольные разряды. Каждый контрольный разряд является как бы дополнением для определенных информационных разрядов для проверки на четность.
При декодировании вычисляем корректор K=k4k2k1
Если корректор равен нулю, следовательно, ошибок нет. Если корректор не равен нулю, то местоположение вектор-столбца матрицы H, совпадающего с вычисленным корректором, указывает место ошибки. При передаче может возникнуть двойная и более ошибка. Корректор также не будет равен нулю. В этом случае произойдет исправление случайного символа и нами будет принят неверный код. Для исключения такого автоматического исправления вводится еще один символ для проверки всей комбинации на четность. Кодовое расстояние d=4. Тогда матрица H будет иметь вид
По формуле (5.2) находим число контрольных символов r=3. Берем регистр из 7 ячеек памяти. Размещаем исходную комбинацию в ячейках 3,5,6,7.
Находим контрольные символы
е4 = 5 + 6 + 7 = 1 + 0 + 1 = 0
е2 = 3 + 6 + 7 = 1 + 0 + 1 = 0
е1 = 3 + 5 + 7 = 1 + 1 + 1 = 1
Закодированная комбинация будет иметь вид
Допустим, что при передаче возникла ошибка, и мы приняли неверную комбинацию
к 4 = 4 + 5 + 6 + 7 = 0 + 1 + 1 + 1 = 1
к2 = 2 + 3 + 6 + 7 = 0 + 1 + 1 + 1 = 1
к1 = 1 + 3 + 5 + 7 = 1 + 1 + 1 + 1 + 0
K= — в шестом разряде ошибка.
Если бы нам понадобилось построить код и для проверки двойных ошибок, необходимо было бы ввести еще один дополнительный нулевой разряд.
Получим следующий код
При передаче и возникновении ошибки код будет иметь вид
Проверка в этом случае показала бы, что корректор K=110, а проверка всей комбинации на четность E0 = 0+1+0+1+0+1+1+1=1. Это указывает на одиночную ошибку. Допускается автоматическое исправление ошибки.
Существует следующий алгоритм декодирования кода Хэмминга с d=4
Код (7,4) является минимально возможным кодом с достаточно большой избыточностью. Эффективность кода (k/n) растет с увеличением длины кода
Электронные средства сбора, обработки и отображения информации
Оглавление
Помехоустойчивое кодирование
Понятие корректирующего кода
Теория помехоустойчивого кодирования базируется на результатах исследований, проведенных Клодом Шенноном. Он сформулировал теорему для дискретного канала с шумом: при любой скорости передачи двоичных символов, меньшей, чем пропускная способность канала, существует такой код, при котором вероятность ошибочного декодирования будет сколь угодно мала.
Построение такого кода достигается ценой введения избыточности. То есть, применяя для передачи информации код, у которого используются не все возможные комбинации, а только некоторые из них, можно повысить помехоустойчивость приема. Такие коды называют избыточными или корректирующими. Корректирующие свойства избыточных кодов зависят от правил построения этих кодов и параметров кода (длительности символов, числа разрядов, избыточности и др.).
В настоящее время наибольшее внимание уделяется двоичным равномерным корректирующим кодам. Они обладают хорошими корректирующими свойствами и их реализация сравнительно проста.
Наиболее часто применяются блоковые коды. При использовании блоковых кодов цифровая информация передается в виде отдельных кодовых комбинаций (блоков) равной длины. Кодирование и декодирование каждого блока осуществляется независимо друг от друга, то есть каждой букве сообщения соответствует блок из п символов.
Блоковый код называется равномерным, если п (значность) остается одинаковой для всех букв сообщения.
Различают разделимые и неразделимые блоковые коды.
При кодировании разделимыми кодами кодовые операции состоят из двух разделяющихся частей: информационной и проверочной. Информационные и проверочные разряды во всех кодовых комбинациях разделимого кода занимают одни и те же позиции.
При кодировании неразделимыми кодами разделить символы выходной последовательности на информационные и проверочные невозможно.
Непрерывными называются такие коды, в которых введение избыточных символов в кодируемую последовательность информационных символов осуществляется непрерывно, без разделения ее на независимые блоки. Непрерывные коды также могут быть разделимыми и неразделимыми.
Общие принципы использования избыточности
Способность кода обнаруживать и исправлять ошибки обусловлена наличием избыточных символов. На ввод кодирующего устройства поступает последовательность из k информационных двоичных символов. На выходе ей соответствует последовательность из п двоичных символов, причем n>k. Всего может быть различных входных последовательностей и
различных выходных последовательностей. Из общего числа
выходных последовательностей только
последовательностей соответствуют входным. Будем называть их разрешенными кодовыми комбинациями. Остальные (
—
) возможных выходных последовательностей для передачи не используются. Их будем называть запрещенными кодовыми комбинациями.
— случаев безошибочной передачи;
— ·(
-1) случаев перевода в другие разрешенные комбинации, что соответствует необнаруживаемым ошибкам;
— ·(
—
) случаев перехода в неразрешенные комбинации, которые могут быть обнаружены.
Часть обнаруживаемых ошибочных кодовых комбинаций от общего числа возможных случаев передачи соответствует:
Кобн .
Рассмотрим, например, обнаруживающую способность кода, каждая комбинация которого содержит всего один избыточный символ (п=k+1). Общее число выходных последовательностей составит , то есть вдвое больше общего числа кодируемых входных последовательностей. За подмножество разрешенных кодовых комбинаций можно принять, например, подмножество
комбинаций, содержащих четное число единиц (или нулей). При кодировании к каждой последовательности из k информационных символов добавляется один символ (0 или 1), такой, чтобы число единиц в кодовой комбинации было четным. Искажение любого четного числа символов переводит разрешенную кодовую комбинацию в подмножество запрещенных комбинаций, что обнаруживается на приемной стороне по нечетности числа единиц. Часть обнаруженных ошибок составляет:
Кобн .
Пример кодирующего устройства с проверкой на четность показан на рис.
Основные параметры корректирующих кодов
Основными параметрами, характеризующими корректирующие свойства кодов являются избыточность кода, кодовое расстояние, число обнаруживаемых или исправленных ошибок.
Рассмотрим суть этих параметров.
Избыточность корректирующего кода может быть абсолютной и относительной. Под абсолютной избыточностью понимают число вводимых дополнительных разрядов
Относительной избыточностью корректирующего кода называют величину
отн
отн.
Эта величина показывает, какую часть общего числа символов кодовой комбинации составляют информационные символы. Ее еще называют относительной скоростью передачи информации.
Если производительность источника равна Н символов в секунду, то скорость передачи после кодирования этой информации будет равна
поскольку в последовательности из п символов только k информационных.
Если число ошибок, которое нужно обнаружить или исправить, значительно, необходимо иметь код с большим числом проверочных символов. Скорость передачи информации при этом будет уменьшена, так как появляется временная задержка информации. Она тем больше, чем сложнее кодирование.
Кодовое расстояние характеризует cтепень различия любых двух кодовых комбинаций. Оно выражается числом символов, которыми комбинации отличаются одна от другой.
Чтобы получить кодовое расстояние между двумя комбинациями двоичного кода, достаточно подсчитать число единиц в сумме этих комбинаций по модулю 2.
Кодовое расстояние может быть различным. Так, в первичном натуральном безызбыточном коде это расстояние для различных комбинаций может различаться от единицы до п, равной значности кода.
Число обнаруживаемых ошибок определяется минимальным расстоянием между кодовыми комбинациями. Это расстояние называется хэмминговым.
В безызбыточном коде все комбинации являются разрешенными, =1. Достаточно только исказиться одному символу, и будет ошибка в сообщении.
Теорема. Чтобы код обладал свойствами обнаруживать одиночные ошибки, необходимо ввести избыточность, которая обеспечивала бы минимальное расстояние между любыми двумя разрешенными комбинациями не менее двух.
Доказательство. Возьмем значность кода п=3. Возможные комбинации натурального кода образуют следующее множество: 000, 001, 010, 011, 100, 101, 110, 111. Любая одиночная ошибка трансформирует данную комбинацию в другую разрешенную комбинацию. Ошибки здесь не обнаруживаются и не исправляются, так как =1. Если
=2, то ни одна из разрешенных кодовых комбинаций при одиночной ошибке не переходит в другую разрешенную комбинацию.
Пусть подмножество разрешенных комбинаций образовано по принципу четности числа единиц. Тогда подмножества разрешенных и запрещенных комбинаций будут такие:
Очевидно, что искажение помехой одного разряда (одиночная ошибка) приводит к переходу комбинации в подмножество запрещенных комбинаций. То есть этот код обнаруживает все одиночные ошибки.
В общем случае при необходимости обнаруживать ошибки кратности — минимальное хэммингово расстояние должно быть, по крайней мере, на единицу больше
, то есть
+1.
В этом случае никакая ошибка кратности не в состоянии перевести одну разрешенную комбинацию в другую.
Ошибки можно не только обнаруживать, но и исправлять.
Теорема. Для исправления одиночной ошибки каждой разрешенной кодовой комбинации необходимо сопоставить подмножество запрещенных кодовых комбинаций. Чтобы эти подмножества не пересекались, хэммингово расстояние должно быть не менее трех.
Доказательство. Пусть, как и в предыдущем примере, п=3. Примем разрешенные комбинации 000 и 111 (кодовое расстояние между ними равно 3). Разрешенной комбинации 000 поставим в соответствие подмножество запрещенных комбинаций 001, 010, 100. Эти запрещенные комбинации образуются в результате возникновения единичной ошибки в комбинации 000.
Аналогично разрешенной комбинации 111 необходимо поставить в соответствие подмножество запрещенных комбинаций 110, 011, 101. Если сопоставить эти подмножества запрещенных комбинаций, то очевидно, что они не пересекаются:
В общем случае исправляемые ошибки кратности связаны с кодовым расстоянием соотношением
=2
+1. (2.1)
где — сочетание из п элементов по t (число возможных ошибок кратности t на длине п-разрядной комбинации).
Если, например, п=7, =1, то из (2.1)
Нужно отметить, что каждый конкретный корректирующий код не гарантирует исправления любой комбинации ошибок. Коды предназначены для исправления комбинаций ошибок, наиболее вероятных для заданного канала связи.
Групповой код с проверкой на четность
Недостатком кода с четным числом единиц является необнаружение четных групповых ошибок. Этого недостатка лишены коды с проверкой на четность, где комбинации разбиваются на части, из них формируется матрица, состоящая из некоторого числа строк и столбцов:
Строки образуются последовательно по мере поступления символов исходного кода. Затем после формирования т строк матрицы производится проверка на четность ее столбцов и образуются контрольные символы . Контрольные символы образуются путем суммирования по модулю 2 информационных символов, расположенных в столбце:
.
При таком кодировании четные групповые ошибки обнаруживаются. Не обнаруживаются лишь такие ошибки, при которых искажено четное число символов в столбце.
Можно повысить обнаруживающую способность кода путем одновременной проверки на четность по столбцам и строкам или столбцам и диагоналям (поперечная и диагональная проверка).
Если проверка проводится по строкам и столбцам, то код называется матричным.
Проверочные символы располагаются следующим образом:
;
.
В этом случае не обнаруживаются только ошибки четной кратности с кратностью 4, 8, 16 и т.д., при которых происходит искажение символов с попарно одинаковыми индексами строк столбцов. Наименьшая избыточность кода получается в том случае, когда образуемая матрица является квадратной.
Недостатком такого кода является необходимость внесения задержки в передачу информации на время, необходимое для формирования матрицы.
Матричный код позволяет исправлять одиночные ошибки. Ошибочный элемент находится на пересечении строки и столбца, в которых имеется нарушение четности.
Коды с постоянным весом
Весом называется число единиц, содержащихся в кодовых комбинациях.
В коде «3 из 7» возможных комбинаций сто двадцать восемь (=128), а разрешенных кода только тридцать пять. Относительная избыточность отн = 0,28.
Схема устройства определения веса комбинаций кода «3 из 7» приведена на рис. 2.6.
Циклические коды
Циклические коды характеризуются тем, что при циклической перестановке всех символов кодовой комбинации данного кода образуется другая кодовая комбинация этого же кода.
— комбинация циклического кода;
— также комбинация циклического кода.
Например, комбинация 1001111 (п=7) будет представлена многочленом
При таком представлении действия над кодовыми комбинациями сводятся к действиям над многочленами. Эти действия производятся в соответствии с обычной алгебры, за исключением того, что приведение подобных членов осуществляется по модулю 2.
Обнаружение ошибок при помощи циклического кода обеспечивается тем, что в качестве разрешенных комбинаций выбираются такие, которые делятся без остатка на некоторый заранее выбранный полином G(x). Если принятая комбинация содержит искаженные символы, то деление на полином G(x) осуществляется с остатком. При этом формируется сигнал, свидетельствующий об ошибке. Полином G(x) называется образующим.
Построение комбинаций циклического кода возможно путем умножения исходной комбинации А(х) на образующий полином G(x) с приведением подобных членов по модулю 2:
Таким образом, все полиномы, отображающие комбинации циклического кода, будут иметь степень ниже п.
Часто в качестве полинома, на который осуществляется деление, берется полином G(x)=+1. При таком формировании кодовых комбинаций позиции информационных и контрольных символов заранее определить нельзя.
Большим преимуществом циклических кодов является простота построения кодирующих и декодирующих устройств, которые по своей структуре представляют регистры сдвига с обратными связями.
Число разрядов регистра выбирается равным степени образующего полинома.
Обратная связь осуществляется с выхода регистра на некоторые разряды через сумматоры, число которых выбирается на единицу меньше количества ненулевых членов образующего полинома. Сумматоры устанавливаются на входах тех разрядов регистра, которым соответствуют ненулевые члены образующего полинома.
На рис. 2.7 приведена схема кодирующего регистра для преобразования четырехразрядной комбинации в семиразрядную.
В табл. 2.3 показано, как путем сдвигов исходной комбинации 0101 получается комбинация циклического кода 1010011. п=7, k=4. Комбинация 0101, ключ в положении 1. В течение первых четырех тактов регистр будет заполнен, затем ключ переводится в положение 2. Обратная связь замыкается. Под действием семи сдвигающих тактов проходит формирование семиразрядного циклического кода.
Свойства циклического кода:
1) циклический код обнаруживает все одиночные ошибки, если образующий полином содержит более одного члена. Если G(x)=x+1, то код обнаруживает одиночные ошибки и все нечетные;
2) циклический код с G(x)=(x+1)G(x) обнаруживает все одиночные, двойные и тройные ошибки;