Кодировка информации для чего

Кодирование информации

В информатике большое число информационных процессов проходит с использованием кодирования данных. Поэтому понимание данного процесса очень важно при постижении азов этой науки. Под кодированием информации понимают процесс преобразования символов записанных на разных естественных языках (русский язык, английский язык и т.д.) в цифровое обозначение.

Кодировка информации для чего. im 254. Кодировка информации для чего фото. Кодировка информации для чего-im 254. картинка Кодировка информации для чего. картинка im 254. Кодирование информации

Это означает, что при кодировании текста каждому символу присваивается определенное значение в виде нулей и единиц – байта.

Зачем кодировать информацию?

Во-первых, необходимо ответить на вопрос для чего кодировать информацию? Дело в том, что компьютер способен обрабатывать и хранить только лишь один вид представления данных – цифровой. Поэтому любую входящую в него информацию необходимо переводить в цифровой вид.

Стандарты кодирования текста

Чтобы все компьютеры могли однозначно понимать тот или иной текст, необходимо использовать общепринятые стандарты кодирования текста. В прочих случаях потребуется дополнительное перекодирование или несовместимость данных.

Кодировка информации для чего. im 257. Кодировка информации для чего фото. Кодировка информации для чего-im 257. картинка Кодировка информации для чего. картинка im 257. Кодирование информации

ASCII

UNICODE

Нужно было спасать положение в плане совместимости таблиц кодировки. Поэтому, со временем были разработаны новые обновлённые стандарты. В настоящее время наиболее популярной является кодировка под названием UNICODE. В ней каждый символ кодируется с помощью 2-х байт, что соответствует 216=62536 разным кодам.

Кодировка информации для чего. im 256. Кодировка информации для чего фото. Кодировка информации для чего-im 256. картинка Кодировка информации для чего. картинка im 256. Кодирование информации

Стандарты кодирования графических данных

Чтобы закодировать изображение требуется гораздо больше байт, чем для кодирования символов. Большинство созданных и обработанных изображений, хранящихся в памяти компьютера, разделяют на две основные группы:

Растровая графика

В растровой графике изображение представлено набором цветных точек. Такие точки называют пикселями (pixel). При увеличении изображения такие точки превращаются в квадратики.

Для кодирования чёрно-белого изображения каждый пиксель кодируется одним битом. К примеру, чёрный цвет — 0, а белый — 1)

Наше прошлое изображение можно закодировать так:

При кодировании нецветных изображений чаще всего применяют палитру из 256 оттенков серого, начиная от белого и заканчивая чёрным. Поэтому для кодирования такой градации достаточно одного байта (28=256).

В кодирования цветных изображений применяют несколько цветовых схем.

Кодировка информации для чего. im 258. Кодировка информации для чего фото. Кодировка информации для чего-im 258. картинка Кодировка информации для чего. картинка im 258. Кодирование информации

На практике, чаще применяют цветовую модель RGB, где соответственно используется три основных цвета: красный, зелёный и синий. Остальные цветовые оттенки получаются при смешивании этих основных цветов.

Таким образом, для кодирования модели из трёх цветов в 256 тонов, получается свыше 16,5 миллионов разных цветовых оттенков. То есть для кодирования применяют 3⋅8=24 бита, что соответствует 3 байтам.

Естественно, что можно использовать минимальное количество бит для кодирования цветных изображений, но тогда может быть образовано и меньшее количество цветовых тонов, в связи, с чем качество изображения существенно понизится.

Чтобы определить размер изображения нужно умножить количество пикселей в ширину на длину количество пикселей и ещё раз умножить на размер самого пикселя в байтах.

I=a*b*i

К примеру, цветное изображение размером 800⋅600 пикселей, занимает 60000 байт.

Векторная графика

Объекты векторной графики кодируются совершенно по-другому. Здесь изображение состоит из линий, которые могут иметь свои коэффициенты кривизны.

Кодировка информации для чего. im 259. Кодировка информации для чего фото. Кодировка информации для чего-im 259. картинка Кодировка информации для чего. картинка im 259. Кодирование информации

Стандарты кодирования звука

Звуки, которые слышит человек, представляют собой колебания воздуха. Звуковые колебания – это процесс распространения волн.

Звук имеет две основные характеристики:

Звук можно преобразовать в электрический сигнал, с помощью микрофона. Звук кодируется с определенным, заранее заданным интервалом времени. В этом случае измеряется размер электрического сигнала и присваивается бинарная величина. Чем чаще делают данные измерения, тем выше качество звука.

Кодировка информации для чего. im 260. Кодировка информации для чего фото. Кодировка информации для чего-im 260. картинка Кодировка информации для чего. картинка im 260. Кодирование информации

Компакт-диск объемом 700 Мб, вмещает порядка 80 минут звука CD-качества.

Стандарты кодирования видео

Как вы знаете, видеоряд состоит из быстро меняющихся фрагментов. Смена кадров происходит со скоростью в интервале 24-60 кадров в секунду.

Размер видеоряда в байтах определяется размером кадра (количеством пикселей на экран по высоте и ширине), количеством используемых цветов, а также количеством кадров в секунду. Но наряду с этим может присутствовать ещё и звуковая дорожка.

Источник

Практическое применение кодирования информации

Цель работы: ознакомление с многообразием окружающих человека кодов, ролью и определением области практического применения кодирования информации.

Актуальность данной темы определяется необходимостью рассматривать вопросы, связанные с кодированием информации, в виду их большой практической значимостью.

Практическая значимость: материал статьи может быть использован в качестве дополнительного при рассмотрении вопроса о кодировании информации или как учебный материал при проведении семинарского занятия.

Фундаментальной чертой цивилизации является рост производства, потребления и накопления информации во всех отраслях человеческой деятельности. Вся жизнь человека, так или иначе, связана с получением, накоплением и обработкой информации. Что бы человек ни делал: читает ли он книгу, смотрит ли он телевизор, разговаривает, он постоянно и непрерывно получает и обрабатывает информацию.

Любой живой организм, в том числе человек, является носителем генетической информации, которая передается по наследству. Генетическая информация хранится во всех клетках организма в молекулах ДНК (дезоксирибонуклеиновой кислоты). Молекула ДНК человека включает в себя около трех миллиардов пар нуклеотидов, и в ней закодирована вся информация об организме человека: его внешность, здоровье или предрасположенность к болезням, способности и т.д.

Человек воспринимает окружающий мир, т.е. получает информацию, с помощью органов чувств. Чтобы правильно ориентироваться в мире, он запоминает полученные сведения, т.е. хранит информацию, человек принимает решения, т.е. обрабатывает информацию, а при общении с другими людьми – передает и принимает информацию. Человек живет в мире информации.

Для любой операции над информацией (даже такой простой, как сохранение) она должна быть как-то представлена (записана, зафиксирована). Этот процесс имеет специальное название – кодирование информации.

ПРЕДСТАВЛЕНИЕ И КОДИРОВАНИЕ ИНФОРМАЦИИ.

История кодирования информации начинается в доисторической эпохе, когда первобытный человек выбивал в скале образы известных ему объектов окружающего мира.

Кодирование информации необычайно разнообразно. Указания водителю автомобиля кодируются в виде дорожных знаков. Музыкальное произведение кодируется с помощью знаков нотной грамоты, для записи шахматных партий и химических формул созданы специальные системы записи. Любой грамотный компьютерный пользователь знает о существовании кодировок символов. Географическая карта кодирует информацию о местности. Необходимость кодирования речевой информации возникла в связи с бурным развитием техники связи, особенно мобильной связи. Людьми были придуманы специальные коды: Азбука Брайля, азбука Морзе, флажковая азбука. Таких примеров можно приводить очень много.

Известно, что одну и ту же информацию мы можем выразить разными способами.

Набор знаков, в котором определен их порядок, называется алфавитом.

Таким образом, кодирование информации – это процесс формирования определенного представления информации. Значимость кодирования возросла в последние десятилетия в связи с внедрением ЭВМ.

C появлением компьютеров возникла необходимость кодирования всех видов информации, с которыми имеет дело и отдельный человек, и человечество в целом. Пписьменность и арифметика – есть не что иное, как система кодирования речи и числовой информации. Информация никогда не появляется в чистом виде, она всегда как-то представлена, как-то закодирована.

Код, знак и язык позволяют передавать информацию в символическом виде, удобном для ее кодирования

Компьютер может обрабатывать только информацию, представленную в числовой форме. Вся другая информация (например, звуки, изображения, показания приборов и т. д.) для обработки на компьютере должна быть преобразована в числовую форму.

ПРАКТИЧЕСКОЕ ПРИМЕНЕНИЕ КОДИРОВАНИЯ ИНФОРМАЦИИ.

Стенография – это скоростное письмо особыми знаками, настолько краткими, что ими можно записать живую речь. Стенография пришла к нам из древнейших времен. Еще в Древнем Египте скорописцы записывали речь фараонов. Широкое распространение стенография получила в Древней Греции. В 1883 г. в Акрополе была найдена мраморная плита, на которой были высечены стенографические знаки. По мнению ученых, эти записи были сделаны в 350 г. до н.э. Но общепризнанным днем рождения стенографии считается 5 декабря 63 года до н.э. Тогда в Древнем Риме возникла необходимость дословной записи устной речи. Автором древнеримской стенографии считается Тирон – секретарь знаменитого оратора Цицерона.

В современном мире, несмотря на обилие средств механической фиксации слова (магнитофонов, диктофонов), владение навыками стенографии по-прежнему ценится. Мы записываем в среднем в пять раз медленнее, чем говорим. Стенография же ликвидирует этот разрыв. Она особенно полезна при конспектировании лекций, публичных выступлений, бесед, составлении докладов, подготовке статей и т. п.

Известно немало случаев, когда стенография оказывала неоценимую помощь людям разных профессий (Приложение 2).

Телефонный план нумерации.

В России используется закрытая десятизначная нумерация. Это значит, что любой полный телефонный номер с кодом региона или мобильной сети должен иметь 10 цифр. Это называется Национальный телефонный номер. При звонке на телефон с отличным от “домашнего” кодом региона понадобится дополнительно набирать код выхода на междугороднюю связь (“8”).

Персональные данные.

В последнее время очень актуален вопрос о персональных данных. Персональные данные человека записаны в его паспорте.

Под фотографией в паспорте на просвет просматриваются магнитные метки с записанной информацией, которая считывается только электронным способом и недоступна владельцу документа. Подписываясь под этой графой в паспорте (пока не заполняемой по техническим причинам), человек дает согласие на присвоение ему кода вместо имени, т.е. производится замена имени числом.

Штрих-коды.

С развитием информационной техники, широким внедрением средств вычислительной техники во многие сферы деятельности все острее встает вопрос быстрого и надежного ввода информации. Ручной ввод кода изделия требуют больших затрат ручного труда, времени, часто приводит к ошибкам.

В настоящее время в России и за рубежом ведутся большие работы по созданию автоматизированных систем обработки данных с применением машиночитаемых документов (МЧД), одной из разновидностей которых являются документы со штриховыми кодами. К машиночитаемым относятся товаросопроводительные документы, ярлыки и упаковки товаров, чековые книжки и пластиковые карточки для оплаты услуг, магнитные носители. В связи с этим появились термины “электронные ведомости”, “электронные деньги” и т. д.

Наиболее перспективным и быстроразвивающимся направлением автоматизации процесса ввода информации в ЭВМ является применение штриховых кодов.

Штриховой код представляет собой чередование темных и светлых полос разной ширины. Структура штрихового кода представлена на слайде.

В настоящее время штриховые коды широко используются не только при производстве и в торговле товарами, но и во многих отраслях промышленного производства.

Смайлики.

Компьютерный диалект используется в основном для неформального общения её членов, поэтому возникла необходимость передачи эмоций и даже мимики пишущего. В обычном тексте сделать это достаточно сложно, из-за чего и появились специфические знаки препинания (так называемые смайлики). Для их чтения лучше всего немного наклонить голову влево: тогда можно увидеть стилизованный портрет компьютерщика. Интересна история создания смайлика (Приложение 4).

Смайликами (от smile – улыбка) в Интернете называют значки, составленные из знаков препинания, букв и цифр, обозначающие какие-то эмоции.

Смайлик – это лучший способ передать ваши чувства и эмоции при виртуальном общении! Маленькие забавные рожицы, которые вставляются в текст, избавляют от необходимости писать излияния о ваших переживаниях. Считается, что смайлик для Интернета – все равно, что для человечества колесо. Без него невозможно обойтись ни в одной форме виртуального общения. Он крайне прост в употреблении, информативен и при всей своей простоте дает широкий простор воображению. Неудивительно, что его переняли sms-коммуникация, реклама, дизайн, обычная почта, при обмене записками на уроках.

Смайлики настолько прочно вошли в нашу жизнь, что перекочевали из виртуального пространства в науки. Так в психологии, смайлики используют для обозначения типов темпераментов или отслеживают настроение человека.

ЗАКЛЮЧЕНИЕ.

Мы знаем, насколько велики возможности компьютеров, и широк спектр их применения сегодня и можем только догадываться, какие задачи смогут решать они в ближайшем будущем. Поэтому особенно остро встает вопрос о знании и понимании способов представления информации в компьютере. Нужно, чтобы люди (не только программисты-профессионалы, но и простые пользователи) имели понятие о кодировании информации и о возможных способах кодирования разных видов информации.

Для наглядности представления материала может быть использованы слайды презентации из Приложения 5.

Источник

Кодирование для чайников, ч.1

Не являясь специалистом в обозначенной области я, тем не менее, прочитал много специализированной литературы для знакомства с предметом и прорываясь через тернии к звёздам набил, на начальных этапах, немало шишек. При всём изобилии информации мне не удалось найти простые статьи о кодировании как таковом, вне рамок специальной литературы (так сказать без формул и с картинками).

Статья, в первой части, является ликбезом по кодированию как таковому с примерами манипуляций с битовыми кодами, а во второй я бы хотел затронуть простейшие способы кодирования изображений.

0. Начало

Давайте рассмотрим некоторые более подробно.

1.1 Речь, мимика, жесты

1.2 Чередующиеся сигналы

В примитивном виде кодирование чередующимися сигналами используется человечеством очень давно. В предыдущем разделе мы сказали про дым и огонь. Если между наблюдателем и источником огня ставить и убирать препятствие, то наблюдателю будет казаться, что он видит чередующиеся сигналы «включено/выключено». Меняя частоту таких включений мы можем выработать последовательность кодов, которая будет однозначно трактоваться принимающей стороной.

Кодировка информации для чего. image loader. Кодировка информации для чего фото. Кодировка информации для чего-image loader. картинка Кодировка информации для чего. картинка image loader. Кодирование информации

1.3 Контекст

2. Кодирование текста

Текст в компьютере является частью 256 символов, для каждого отводится один байт и в качестве кода могут быть использованы значения от 0 до 255. Так как данные в ПК представлены в двоичной системе счисления, то один байт (в значении ноль) равен записи 00000000, а 255 как 11111111. Чтение такого представления числа происходит справа налево, то есть один будет записано как 00000001.

Итак, символов английского алфавита 26 для верхнего и 26 для нижнего регистра, 10 цифр. Так же есть знаки препинания и другие символы, но для экспериментов мы будем использовать только прописные буквы (верхний регистр) и пробел.

Тестовая фраза «ЕХАЛ ГРЕКА ЧЕРЕЗ РЕКУ ВИДИТ ГРЕКА В РЕЧКЕ РАК СУНУЛ ГРЕКА РУКУ В РЕКУ РАК ЗА РУКУ ГРЕКУ ЦАП».

Кодировка информации для чего. image loader. Кодировка информации для чего фото. Кодировка информации для чего-image loader. картинка Кодировка информации для чего. картинка image loader. Кодирование информации

2.1 Блочное кодирование

Информация в ПК уже представлена в виде блоков по 8 бит, но мы, зная контекст, попробуем представить её в виде блоков меньшего размера. Для этого нам нужно собрать информацию о представленных символах и, на будущее, сразу подсчитаем частоту использования каждого символа:

Источник

Кодирование информации

Вы будете перенаправлены на Автор24

Общие понятия

Кодирование — это преобразование информации из одной ее формы представления в другую, наиболее удобную для её хранения, передачи или обработки.

Кодом называют правило отображения одного набора знаков в другом.

Длина кода – это количество знаков, используемых для представления кодируемой информации.

Виды кодирования информации

Различают кодирование информации следующих видов:

Кодирование текстовой информации

Любой текст (к примеру, студенческий реферат) состоит из последовательности символов. Символами могут быть буквы, цифры, знаки препинания, знаки математических действий, круглые и квадратные скобки и т.д.

Текстовая информация, как и любая другая, хранится в памяти компьютера в двоичном виде. Для этого каждому ставится в соответствии некоторое неотрицательное число, называемое кодом символа, и это число записывается в память ЭВМ в двоичном виде. Конкретное соотношение между символами и их кодами называется системой кодировки. В персональных компьютерах обычно используется система кодировки ASCII (American Standard Code for Informational Interchange – Американский стандартный код для информационного обмена).

Готовые работы на аналогичную тему

Восьмибитными кодировками, распространенными в нашей стране, являются KOI8, UTF8, Windows-1251 и некоторые другие.

Кодирование цвета

Чтобы сохранить в двоичном коде фотографию, ее сначала виртуально разделяют на множество мелких цветных точек, называемых пикселями (что-то на подобии мозаики). После разбивки на точки цвет каждого пикселя кодируется в бинарный код и записывается на запоминающем устройстве.

Если говорят, что размер изображения составляет, например, х 512х512 точек, это значит, что оно представляет собой матрицу, сформированную из 262144 пикселей (количество пикселей по вертикали, умноженное на количество пикселей по горизонтали).

Однако качество кодирования фотографий в бинарный код зависит не только от количества пикселей, но также и от их цветового разнообразия. Алгоритмов записи цвета в двоичном коде существует несколько. Самым распространенным из них является RGB. Эта аббревиатура – первые буквы названий трех основных цветов: красного – англ.Red, зеленого – англ. Green, синего – англ. Blue. Смешивая эти три цвета в разных пропорциях, можно получить любой другой цвет или оттенок.

На этом и построен алгоритм RGB. Каждый пиксель записывается в двоичном коде путем указания количества красного, зеленого и синего цвета, участвующего в его формировании.

Чем больше битов выделяется для кодирования пикселя, тем больше вариантов смешивания этих трех каналов можно использовать и тем значительнее будет цветовая насыщенность изображения.

Цветовое разнообразие пикселей, из которых состоит изображение, называется глубиной цвета.

Кодирование графической информации

Описанная выше техника формирования изображений из мелких точек является наиболее распространенной и называется растровой. Но кроме растровой графики, в компьютерах используется еще и так называемая векторная графика.

Векторные изображения создаются только при помощи компьютера и формируются не из пикселей, а из графических примитивов (линий, многоугольников, окружностей и др.).

Чтобы записать на запоминающем устройстве векторное изображение круга, компьютеру достаточно в двоичный код закодировать тип объекта (окружность), координаты его центра на холсте, длину радиуса, толщину и цвет линии, цвет заливки. В растровой системе пришлось бы кодировать цвет каждого пикселя. И если размер изображения большой, для его хранения понадобилось бы значительно больше места на запоминающем устройстве.

Тем не менее, векторный способ кодирования не позволяет записывать в двоичном коде реалистичные фото. Поэтому все фотокамеры работают только по принципу растровой графики. Рядовому пользователю иметь дело с векторной графикой в повседневной жизни приходится не часто.

Кодирование числовой информации

При кодировании чисел учитывается цель, с которой цифра была введена в систему: для арифметических вычислений или просто для вывода. Все данные, кодируемые в двоичной системе, шифруются с помощью единиц и нолей. Эти символы еще называют битами. Этот метод кодировки является наиболее популярным, ведь его легче всего организовать в технологическом плане: присутствие сигнала – 1, отсутствие – 0. У двоичного шифрования есть лишь один недостаток – это длина комбинаций из символов. Но с технической точки зрения легче орудовать кучей простых, однотипных компонентов, чем малым числом более сложных.

Целые числа кодируются просто переводом чисел из одной системы счисления в другую. Для кодирования действительных чисел используют 80-разрядное кодирование. При этом число преобразуют в стандартный вид.

Кодирование звуковой информации

Принцип разделения звуковой волны на мелкие участки лежит в основе двоичного кодирования звука. Аудиокарта компьютера разделяет звук на очень мелкие временные участки и кодирует степень интенсивности каждого из них в двоичный код. Такое дробление звука на части называется дискретизацией. Чем выше частота дискретизации, тем точнее фиксируется геометрия звуковой волны и тем качественней получается запись.

Качество записи сильно зависит также от количества битов, используемых компьютером для кодирования каждого участка звука, полученного в результате дискретизации. Количество битов, используемых для кодирования каждого участка звука, полученного при дискретизации, называется глубиной звука.

Кодирование видеозаписи

Видеозапись состоит из двух компонентов: звукового и графического.

Учитывая эту особенность, алгоритмы кодирования видео, как правило, предусматривают запись лишь первого (базового) кадра. Каждый же последующий кадр формируются путем записи его отличий от предыдущего.

Источник

Кодирование информации — основные виды, способы и правила

Информация бывает разных видов, таких как запах, вкус, звук; символы и знаки. В различных отраслях науки, техники и культуры применяются особые формы и методики для кодирования и записи информации.

Рассмотрим, например, персональные компьютеры, которые предназначены для обработки графических изображений, воспроизведения музыки и видеофайлов, организации видео конференций, научных расчетов. Для предоставления данных в виде, понимаемом компьютерами, проводится кодирование информации путём составления специальной модели явления либо объекта. Именно процесс преобразования сообщения в комбинацию символов называется кодированием.

Системы счисления делятся на позиционные и непозиционные. Пример непозиционной системы счисления — римская: несколько чисел приняты за основные (например, I, V, X, L, C, D, M), а остальные получаются из основных путем сложения (как VI, VII) или вычитания (как IV, IX). В непозиционных системах счисления от положения цифры в записи числа не зависит величина, которую она обозначает.

Кодировка информации для чего. Naznachenie sistem programmirovaniya. Кодировка информации для чего фото. Кодировка информации для чего-Naznachenie sistem programmirovaniya. картинка Кодировка информации для чего. картинка Naznachenie sistem programmirovaniya. Кодирование информации

Трактовка понятий

Человеческие мысли выражаются в виде текста, который состоит из слов. Подобное представление информации называется алфавитным, так как основа языка — алфавит. Он считается конечным набором различных знаков любой природы. Их используют для составления сообщений.

Вам известно что для обозначения количества мы пользуемся цифрами, для обозначения звуков на письме буквами. Можно сказать что цифры и буквы это коды. Одна и тажа информация может быть закодирована по разному. Например китайские и японские иероглифы являются символами которыми кодируется буква или слово. Основу любого языка составляет алфавит — конечный набор различных знаков (символов) любой природы, из которых складывается сообщение на данном языке. То есть символизация информации – это описание объектов или явлений с помощью символов того или иного алфавита. Под мощностью алфавита понимают количество символов, составляющий данный алфавит, что в свою очередь определяет количество возможных комбинаций (слов) которые можно составить из символов данного алфавита в соответствии с определенными правилами.

Как правило представления сообщения, подбираются так что бы его передача была как можно быстрее и надежней, а его обработка была как можно более удобной для адресата. Одно и тоже сообщение можно кодировать по разному. Одной систем кодирования является азбука. Можно кодировать и звуки одна из таких систем кодирования — ноты. Хранить можно не только текстовую и звуковую информацию, в виде кодов хранятся и изображения. Если рассмотреть рисунок через увеличительное стекло то видно что он состоит из точек. Координаты каждой точки можно запомнить в виде чисел. Цвет каждой точки можно запомнить так же в виде чисел. Такие числа могут храниться в памяти компьютера и передаваться на расстояния.

Чтобы зашифровать данные, необходимо знать правила записи кодов (условные обозначения информации). Понятие кодирование связано с преобразованием сообщений в комбинацию символов с учётом кодов. При общении люди используют русский либо другой национальный язык. В процессе разговора код передаётся звуками, а при письменном общении с помощью букв. У водителей или у пилотов обработка информации также осуществляется световыми сигналами, специальнвми символами — знаками.

Количество и графическое отображение символов в алфавитах естественных языков сложилось исторически и характеризуется особенностями языка (произносимыми звуками). Например русский алфавит имеет 33 символа, латинский – 26, китайский несколько тысяч.

К основным способам кодирования информации в информатике относятся: числовой, символьный (текстовый), графический. В первом случае используются числа, во втором — символы того алфавита, что и первоначальный текст, в третьем — картинки, рисунки, значки.

Двоичная методика

Современный компьютер может обрабатывать числовую, текстовую, графическую, звуковую и видео информацию. В процессе хранения, обработки и передачи информации в компьютере используется особая двоичная система кодирования, алфавит которой состоит всего из двух знаков «0» и «1». Дело в том, что компьютер способен обрабатывать и хранить только лишь один вид представления данных – цифровой. Связано это с тем, что в цифровой электронике удобнее всего представлять информацию в виде последовательности электрических импульсов: техническое устройство, безошибочно различающее 2 разных состояния сигнала, оказалось проще создать, чем то, которое бы безошибочно различало 5 или 10 различных состояний. Поэтому любую входящую в него информацию необходимо переводить в цифровой вид. Такое кодирование информации принято называть двоичным, на его основе работают все окружающие нас компьютеры, смартфоны и т.п.

На английском языке используется выражение binary digit либо сокращённо bit (бит). Через 1 бит можно выразить: да либо нет; белое или чёрное; ложь либо истина.

Двоичное кодирование информации привлекает тем, что легко реализуется технически. Электронные схемы для обработки двоичных кодов должны находиться только в одном из двух состояний: есть сигнал/нет сигнала или высокое напряжение/низкое напряжение. В результате любая информация кодируется в компьютерах с помощью последовательностей лишь двух цифр — 0 и 1.

Итак, минимальные единицы измерения информации – это бит и байт. Один бит позволяет закодировать 2 значения (0 или 1). Используя два бита, можно закодировать 4 значения: 00, 01, 10, 11. Тремя битами кодируются 8 разных значений: 000, 001, 010, 011, 100, 101, 110, 111. Из приведенных примеров видно, что добавление одного бита увеличивает в 2 раза то количество значений, которое можно закодировать. 1 байт состоит из 8 бит и способен закодировать 256 значений.

Традиционно для того чтобы закодировать один символ используют количество информации равное 1 байту. Поэтому чаще всего одному символу текста, хранимому в компьютере, соответствует один байт памяти.

Наряду с битами и байтами используют и большие единицы измерения информации.

Подробнее о информации в компьютерных системах можно прочтитать в статье Понятие информации. Информатика

Текстовое значение

Кодирование и обработка текстовой информации Уже с 60-х годов прошлого столетия, компьютеры всё больше стали использовать для обработки текстовой информации. Для кодирования текстовой информации в компьютере применяется двоичное кодирование, т.е. представление текста в виде последовательности 0 и 1. Чтобы выразить текст числом, каждая буква сопоставляется с числовым значением. Смысл кодирования: одному символу принадлежит код в пределах 0−255 либо двоичный код от 00000000 до 11111111.

Текстовая информация состоит из символов: букв, цифр, знаков препинания и др. Одного байта достаточно для хранения 256 различных значений, что позво ляет размещать в нем любой из алфавитно-цифровых символов. Первые 128 сим волов (занимающие семь младших бит) стандартизированы с помощью кодировки ASCII (American Standart Code for Information Interchange). Суть кодирования заключается в том, что каждому символу ставят в соответствие двоичный код от 0000000 до 11111111 или соответствующий ему десятичный код от 0 до 255.

В мировой практике для кодирования текста при помощи байтов используются разные стандарты. Самым распространенным, но не единственным видом кодирования является код ASCII. В соответствии с этим стандартом, знаки в пределах 0−32 соответствуют операциям, а 33−127 — символам из латинского алфавита, знакам препинания и арифметики. Для национальных кодировок применяются значения 128−255. В разных национальных кодировках одному и тому же коду соответствуют различные символы. К примеру, существует 5 кодировочных таблиц для русских букв (Windows, MS-DOS, Mac, ISO, КОИ – 8). Поэтому тексты созданные в одной кодировке не будут правильно отображаться в другой.

Первоначально в кодах ASCII было 7 бит информации. В последующем ее расширили до 8-битной (1 байт) кодировки. Обьем 7-битного кодирования по сравнению с 8-битным в 2 раза меньше. 2 7 =128 8 =256.

В настоящее время для кодирования кириллицы наибольшее распространение получила кодовая таблица СР1251, которая используется в операционных системах семейства Windows фирмы Microsoft. Во всех современных кодовых таблицах, кроме таблицы стандарта Unicode, для кодирования одного символа отводится 8 двоичных разрядов (8 бит).

В конце прошлого века появился новый международный стандарт Unicode, в котором один символ представляется двухбайтовым двоичным кодом. Применение этого стандарта – продолжение разработки универсального международного стандарта, позволяющего решить проблему совместимости национальных кодировок символов. С помощью данного стандарта можно закодировать 65536 различных символов.

Растровое изображение

Графическая информация, представленная в виде рисунков, фотографий, слайдов, подвижных изображений (анимация, видео), схем, чертежей, может создаваться и редактироваться с помощью компьютера, при этом она соответствующим образом кодируется. В настоящее время существует достаточно большое количество прикладных программ для обработки графической информации, но все они реализуют три вида компьютерной графики: растровую, векторную и фрактальную. Мы рассмотрим самую распространенный, растровый формат кодирования изображения.

Графические данные на мониторе представляются в качестве растрового изображения. Если более пристально рассмотреть графическое изображение на экране монитора компьютера, то можно увидеть большое количество разноцветных точек (пикселов – от англ. pixel, образованного от picture element – элемент изображения), которые, будучи собраны вместе, и образуют данное графическое изображение. Каждому пикселю присвоен особый код, в котором хранится информация об оттенке пикселя. Из этого можно сделать вывод: графическое изображение в компьютере определенным образом кодируется и должно быть представлено в виде графического файла.

Кодировка информации для чего. rastrovoe kodirovanie izobrazheniya. Кодировка информации для чего фото. Кодировка информации для чего-rastrovoe kodirovanie izobrazheniya. картинка Кодировка информации для чего. картинка rastrovoe kodirovanie izobrazheniya. Кодирование информации

Файлы, созданные на основе растровой графики, предполагают хранение данных о каждой отдельной точке изображения. Для отображения растровой графики не требуется сложных математических расчетов, достаточно лишь получить данные о каждой точке изображения (ее координаты и цвет) и отобразить их на экране монитора компьютера.

Что делать, если рисунок цветной? Формирование цветного изображения на мониторе осуществляется путём смешивания 3-х основных цветов: синего, красного и зелёного. В этом случае для кодирования цвета пикселя уже не обойтись одним битом. В системе кодирования цветных изображений RGB (R — красный, G — зеленый и B — синий) яркость каждой цветовой составляющей (или, как говорят, каждого канала) кодируется целым числом от 0 до 255. При этом код цвета — это тройка чисел (R,G,B), яркости отдельных каналов. Цвет (0,0,0) — это черный цвет, а (255,255,255) — белый. Если все составляющие имеют равную яркость, получаются оттенки серого цвета, от черного до белого. При кодировании цвета на веб-страницах также используется модель RGB, но яркости каналов записываются в шестнадцатеричной системе счисления (от 0016 до FF16), а перед кодом цвета ставится знак #. Например, код красного цвета записывается как #FF0000, а код синего — как #0000FF.

Кодировка информации для чего. kodirovanie tsveta rastrovogo izobrazheniya. Кодировка информации для чего фото. Кодировка информации для чего-kodirovanie tsveta rastrovogo izobrazheniya. картинка Кодировка информации для чего. картинка kodirovanie tsveta rastrovogo izobrazheniya. Кодирование информации

Звуки и их разрядность

Человек воспринимает звуковые волны (колебания воздуха) с помощью слуха в форме звука различных громкости и тона. Чем больше интенсивность звуковой волны, тем громче звук, чем больше частота волны, тем выше тон звука. Для того чтобы компьютер мог обрабатывать звук, непрерывный звуковой сигнал должен быть преобразован в цифровую дискретную форму с помощью временной дискретизации. Непрерывная звуковая волна разбивается на отдельные маленькие временные участки, для каждого такого участка устанавливается определенная величина интенсивности звука.

В каждом современном компьютере предусмотрена звуковая плата, колонки, микрофон. С их помощью производится запись, сохраняются и воспроизводятся звуки — волны с определённой частотой и амплитудой. Программное обеспечение для компьютеров преобразовывает звуковые сигналы в последовательность нулей и единиц. Для этого использунтся аудиоадаптер или звуковая плата. Устройство подключается к компьютеру с целью преобразования электроколебаний звуковой частоты в двоичный код. Процесс преобразования выполняется как при вводе звуков в компьютер так и при обратном их преобразовании.

Для человека звук тем громче, чем больше амплитуда сигнала, и тем выше тон, чем больше частота сигнала. Компьютер — устройство цифровое, поэтому непрерывный звуковой сигнал должен быть преобразован в последовательность электрических импульсов (нулей и единиц). Оцифровку звука выполняет специальное устройство на звуковой плате. Называется оно аналого-цифровой преобразователь (АЦП). Обратный процесс — воспроизведение закодированного звука производится с помощью цифро-аналогового преобразователя (ЦАП).

В процессе кодирования непрерывного звукового сигнала производится его дискретизация по времени, или, как говорят, «временная дискретизация».

Для записи аналогового звука и г го преобразования в цифровую форму используется микрофон, подключенный к звуковой плате. Качество полученного цифрового звука зависит от количества измерений уровня громкости звука в единицу времени, т. е. частоты дискретизации. Чем большее количество измерений производится за 1 секунду (чем больше частота дискретизации), тем точнее «лесенка» цифрового звукового сигнала повторяет кривую аналогового звукового сигнала.

Глубина кодирования звука — это количество бит, используемое для кодирования различных уровней сигнала или состояний. Современные звуковые карты обеспечивают 16-битную глубину кодирования звука, и тогда общее количество различных уровней громкомти, который сможет распознать компьютер будет: N = 2 16 = 65536.

Частота дискретизации- это количество измерений уровня звукового сигнала в единицу времени. Эта характеристика показывает качество и точность процедуры двоичного кодирования. Измеряется в герцах (Гц).

Одно измерение за одну секунду соответствует частоте 1 Гц, 1000 измерений за одну секунду — 1 килогерц (кГц). Частота дискретизации звукового сигнала может принимать значения от 8 до 196 кГц. При частоте 8 кГц качество дискретизированного звукового сигнала соответствует качеству радиотрансляции, а при частоте 48 кГц — качеству звучания аудио-CD. Достаточно высокое качество звучания достигается при частоте дискретизации 44 кГц и глубины кодирования звука, равной 16 бит.

Оцифрованный сигнал в виде набора последовательных значений амплитуды уже можно сохранить в памяти компьютера. В случае, когда записываются абсолютные значения амплитуды, такой формат записи называется PCM ( Pulse Code Modulation). Стандартный аудио компакт-диск (CD-DA), применяющийся с начала 80-х годов 20-го столетия, хранит информацию в формате PCM с частотой дискретизации 44.1 кГц и разрядностью квантования 16 бит.

Подробнее о свойствах звука можно прочитать в статье Звук

Машинные команды

В вычислительных машинах, включая компьютеры, предусмотрена программа для управления их работой. Все команды кодируются в определённой последовательности с помощью нулей и единиц. Подобные действия называются машинными командами (МК).

Машинная команда представляет собой закодированное по определенным правилам указание микропроцессору на выполнение некоторой операции или действия. Каждая команда содержит элементы, определяющие:

Структура машинной команды состоит из операционной и адресной части. В операционной части содержится код операции. Чем длиннее операционная часть, тем большее количество операций можно в ней закодировать.

В адресной части машинной команды содержится информация об адресах операндов. Это либо значения адресов ячеек памяти, в которых размещаются сами операнды (абсолютная адресация), либо информация, по которой процессор определяет значения их адресов в памяти (относительная адресация). Абсолютная адресация использовалась только в машинах 1 и 2-го поколений. Начиная с машин 3-го поколения, наряду с абсолютной используется относительная адресация.

Подробнее о поколениях компьютеров смотрите в статье История развития компьютеров

Заключение

Итак, кодирование информации — процесс преобразования сигнала из формы, удобной для непосредственного использования информации, в форму, удобную для передачи, хранения или автоматической переработки (Цифровое кодирование, аналоговое кодирование, таблично-символьное кодирование, числовое кодирование). Процесс преобразования сообщения в комбинацию символов в соответствии с кодом называется кодированием, процесс восстановления сообщения из комбинации символов называется декодированием.

Кодирование информации — процесс формирования определенного представления информации. В более узком смысле под термином «кодирование» понимают переход от одной формы представления информации к другой, более удобной для хранения, передачи или обработки.

Информацию необходимо представлять в какой — либо форме, т.е. кодировать. Для представления дискретной информации используется некоторый алфавит. Однако однозначное соответствие между информацией и алфавитом отсутствует. Другими словами, одна и та же информация может быть представлена посредством различных алфавитов. В связи с такой возможностью возникает проблема перехода от одного алфавита к другому, причём, такое преобразование не должно приводить к потере информации.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *