когда придумали двоичный код
Двоичный код
Двоичный код — это способ представления данных в одном разряде в виде комбинации двух знаков, обычно обозначаемых цифрами 0 и 1. Разряд в этом случае называется двоичным разрядом.
В случае обозначения цифрами «0» и «1», возможные состояния двоичного разряда наделяются качественным соотношением «1» > «0» и количественными значениями чисел «0» и «1».
Двоичный код может быть непозиционным и позиционным.
Из комбинаторики известно, что, в случае непозиционного кода, количество комбинаций (кодов) n-разрядного кода является числом сочетаний с повторениями, равно биномиальному коэффициенту:
, [возможных состояний (кодов)], где:
— количество элементов в данном множестве различных элементов (количество возможных состояний, цифр, кодов в разряде),
— количество элементов в наборе (количество разрядов).
В двоичной системе кодирования (n=2) количество возможных состояний (кодов) равно :
, [возможных состояний (кодов)], т.е.
, [возможных состояний (кодов)], где
— количество двоичных разрядов (дворов, битов).
Например, в одном 8-ми битном байте (k=8) количество возможных состояний (кодов) равно:
, [возможных состояний (кодов)].
В случае позиционного кода, число комбинаций (кодов) n-разрядного двоичного кода равно числу размещений с повторениями:
, где
— число разрядов двоичного кода.
Используя два двоичных разряда можно закодировать четыре различные комбинации: 00 01 10 11, три двоичных разряда — восемь: 000 001 010 011 100 101 110 111, и так далее.
При увеличении разрядности позиционного двоичного кода на 1, количество различных комбинаций в позиционном двоичном коде удваивается.
Двоичные коды являются комбинациями двух элементов и не являются двоичной системой счисления, но используются в ней как основа. Двоичный код также может использоваться для кодирования чисел в системах счисления с любым другим основанием. Пример: в двоично-десятичном кодировании (BCD) используется двоичный код для кодирования чисел в десятичной системе счисления.
При кодировании алфавитноцифровых символов (знаков) двоичному коду не приписываются весовые коэффициенты, как это делается в системах счисления, в которых двоичный код используется для представления чисел, а используется только порядковый номер кода из множества размещений с повторениями.
В системах счисления n-разрядный двоичный код, (n-1)-разрядный двоичный код, (n-2)-разрядный двоичный код и т. д. могут отображать одно и то же число. Например, 0001, 001, 01, 1 — одно и то же число — «1» в двоичных кодах с разным числом разрядов — n.
Содержание
Таблица двоичных кодов
Пример «доисторического» использования кодов
Инки имели свою счётную систему кипу, которая физически представляла собой верёвочные сплетения и узелки. Генри Эртан обнаружил, что в узелках заложен некий код, более всего похожий на двоичную систему счисления. [1]
Примечания
См. также
Полезное
Смотреть что такое «Двоичный код» в других словарях:
двоичный код — Код, основание которого равно двум. [Сборник рекомендуемых терминов. Выпуск 94. Теория передачи информации. Академия наук СССР. Комитет технической терминологии. 1979 г.] Тематики теория передачи информации EN binary code … Справочник технического переводчика
двоичный код — dvejetainis kodas statusas T sritis automatika atitikmenys: angl. binary code vok. binärer Kode, m; Binärkode, m; dualer Kode, m; Dualkode, m rus. двоичный код, m pranc. code binaire, m … Automatikos terminų žodynas
двоичный код — Код, основание которого равно двум … Политехнический терминологический толковый словарь
двоичный код с исправлением ошибок — Двоичный код, избыточность которого обеспечивает автоматическое обнаружение и исправление ошибок некоторых типов в передаваемых данных. [Домарев В.В. Безопасность информационных технологий. Системный подход.] Тематики защита информации EN вinаry… … Справочник технического переводчика
двоичный код с обнаружением ошибок — — [Л.Г.Суменко. Англо русский словарь по информационным технологиям. М.: ГП ЦНИИС, 2003.] Тематики информационные технологии в целом EN binary error detecting code … Справочник технического переводчика
Двоичный код Голея — У этого термина существуют и другие значения, см. Код Голея. Двоичный код Голея один из двух тесно связанных друг с другом исправляющих ошибки линейных кодов: совершенный двоичный код Голея (англ. perfect binary Golay code) … … Википедия
арифметический двоичный код — обычный двоичный код — [Л.Г.Суменко. Англо русский словарь по информационным технологиям. М.: ГП ЦНИИС, 2003.] Тематики информационные технологии в целом Синонимы обычный двоичный код EN natural binary code … Справочник технического переводчика
натуральный двоичный код ИКМ — Код, при котором кодовые слова, соответствующие квантованным отсчетам сигнала электросвязи при ИКМ, расположенным в порядке возрастания амплитуд, представляют собой неотрицательные целые двоичные числа, взятые в том же порядке. [ГОСТ 22670 77]… … Справочник технического переводчика
сбалансированный двоичный код — код без преобладания — [Л.Г.Суменко. Англо русский словарь по информационным технологиям. М.: ГП ЦНИИС, 2003.] Тематики информационные технологии в целом Синонимы код без преобладания EN zero disparity code … Справочник технического переводчика
симметричный двоичный код ИКМ — Код, при котором полярность квантованного отсчета сигнала электросвязи при ИКМ выражается одним символом цифрового сигнала электросвязи, а остальные символы выражают двоичное число, представляющее абсолютную величину отсчета этого сигнала.… … Справочник технического переводчика
Двоичная система счисления
Все что-то слышали о двоичной системе счисления, все знают, что это некий «язык компьютеров». Но почему именно так? Почему не пользоваться привычной десятичной системой? В чем, собственно, смысл?
Что такое двоичная система? Это позиционная система счисления с основанием 2. Вот только цифры «два» в ней нет, есть только 0 и 1, и так как цифры две, система называется двоичной (бинарной).
Современный цифровой язык, это ноли и единицы, больше ничего и не нужно. Самое интересное, так называемый машинный код использовался людьми задолго до появления самих машин, а, возможно, даже по появления чисел.
Зачем нужна двоичная система
Двоичная, или бинарная система счисления удобна своей простотой. С помощью комбинации нолей и единиц можно записать любой число и любую букву, что угодно может быть закодировано таким образом.
Но главное, что значения всего два. Это либо «ноль», либо «единица». Сигнал либо есть, либо его нет, свет горит или не горит, есть отверстие или нет (перфокарта), намагничен сектор или размагничен… Аналогии можно приводить бесконечно. Главное, что кодировать сигнал просто. Не нужно создавать сложные механизмы или устройства, достаточно только двух состояний.
Например, еще до того как люди научились считать и писать, сигналы передавались с помощью дыма от костра или ударов в барабаны.
Бинарная система — это просто, ничего проще просто нет. Есть, конечно, и древнейшая унитарная система, где значение всего одно (например, только 1) но с ее помощью нельзя ничего закодировать.
В любой микросхеме транзистор может прибывать в двух положениях «закрыто» или «открыто» (0 или 1) ток пропускается или нет.
Кстати, азбука Морзе — это тоже двоичный код (точка или тире), так же, как и древнейшая сигнальная система — «оптический телеграф». Это это просто огонь костра, который можно закрыть и открыть (огонь есть, или огня нет) ночью, а днем так же использовать дым.
Да, двоичная система используется потому, что с ее помощью удобно кодировать информацию, нужны всего 2 значения. Но удобно ли это считать?
Как считать
Как использовать двоичную систему для записи чисел? Так же как и десятичную. Самым простым примером можно считать кодовый замок, такой как на чемоданах. Каждый диск которого, вращается и может принимать значение от 0 до 9. Достаточно представить, что вместо десяти цифр есть только 2, ноль и единица.
Так как система позиционная, это будет выглядит так:
Сейчас здесь записано число «ноль». Чтобы получилась единица, нужно провернуть крайний правый диск один раз.
Начинается самое интересное, как будет выглядеть число «два»? Крутим правое колесико… И снова получаем 0, ведь других значений нет. Нужно поступить так же, как и в десятичной системе, перенести разряд влево. Только в десятичной, это происходит когда значение превышает 9, а в двоичной сразу после 1.
Двоичная система | Десятичная система |
0 | 0 |
1 | 1 |
10 | 2 |
11 | 3 |
100 | 4 |
101 | 5 |
110 | 6 |
111 | 7 |
1000 | 8 |
1001 | 9 |
1010 | 10 |
Сто в двоичной системе — это 1100100.
Очень интересно в бинарной системе выглядит таблица умножения:
Легко запомнить, неправда ли? 0*0=0, 0*1=0, 1*1=1… И все!
Все математические операции выполняются точно так же
Если сложит в столбик то получается нагляднее
100
Складываем ноли, получаем 0, складываем две единицы, получаем ноль (2 раза провернули диск) и единичку переносим вправо.
Как видите, математика та же, вот только запись чисел неудобная, слишком много нолей и единиц, для человека — неудобно, машине же все равно.
Так же как с цифрами можно поступить с буквами. Латинская буква «a» будет выглядеть как 01001010 кириллическая «а» — 000011100010111000011001, и даже пробел — 00010100.
История создания
Ясно, что человечество пользовалось двоичным кодом очень давно. И сигнальные системы с дымом от костров и даже китайская Книга Перемен (700 лет до нашей эры) с ее гексаграммами известны очень давно. Но окончательно практический смысл бинарный код получил совсем недавно (если не считать азбуку Морзе).
Великий Лейбниц занимался двоичной системой в 17 веке, но применить бинарную систему счисления было особо негде. В том же Веке Паскаль создал свою счетную машину (суммирующую), использующую десятичную систему. Оказалось, что считать на таком «калькуляторе» не так уж и удобно.
Суммирующая машина Паскаля (десятичная)
И только в 40-х годах 20 веке, вместе с появлением первых электронный вычислительных машин двоичный код явил всю свою безусловную полезность и красоту. Именно как машинный язык. Записывать информацию в котором гораздо проще, чем привычными нам средствами, буквами и цифрами.
То же самое, в двоичном коде можно сделать проще
Для чего нужна двоичная система счисления сегодня, мы прекрасно знаем, у каждого в кармане есть смартфон. На самом деле, ноли и единицы используются намного чаще, чем десятичная система, даже если мы, люди, этого и не видим. Не удивительно, мы использовали двоичную систему на протяжении всей истории, но до эры машин даже не замечали этого.
История двоичной системы счисления
Оглавление
I. Понятие двоичной системы счисления…………………………………………………………………..
1.1. История двоичной системы счисления
1.2. Перевод чисел из двоичной системы счисления в десятичную
1.3. Перевод десятичного числа в двоичное
II. Почему удобна двоичная система? ………………………………………………
2.1. Достоинства двоичной системы
2.2. Недостатки двоичной системы
Кто стоит у истоков двоичной системы счисления, как давно и где ее начали применять, почему двоичная система счисления сохранилась до наших дней.
Понятие «число» является ключевым как для математики, так и для информатики. Люди всегда считали и записывали числа, даже 5 тысяч лет назад. Но записывали их по другим правилам, хотя в любом случае число изображалось с помощью любого или нескольких символов, которые назывались цифрами.
Язык чисел, как и любой другой, имеет свой алфавит. В том языке чисел, которым мы обычно пользуемся, алфавитом служат десять цифр – от 0 до 9. Это десятичная система счисления.
Системой счисления мы будем называть способ представления числа символами некоторого алфавита, которые называют цифрами.
Причина, по которой десятичная система счисления стала общепринятой, вовсе не математическая. Десять пальцев рук – вот аппарат для счета, которым человек пользуется с доисторических времен. Древнее написание десятичных цифр:
Понятие двоичной системы счисления.
История двоичной системы счисления.
Мысль о двоичной системе принадлежит Лейбницу, который полагал, что при трудных исследованиях в теории чисел она может иметь большие преимущества перед десятичной системой. Кроме того, при всяких арифметических операциях действия над числами, написанными в бинарной системе, облегчаются в высшей степени. Иезуит Буве (Bouvet), миссионер в Китае, которому Лейбниц писал о своём изобретении, сообщил ему, что в Китае существует загадочная надпись, которую можно вполне объяснить бинарной системой. Надпись эта, которую приписывают императору Фо-ги, жившему в 25 веке до н. э., основателю Китайской империи, покровителю наук и искусств, не могла быть объяснена китайскими учёными, которые считали её не имеющей смысла. Она состоит из ряда длинных и коротких чёрточек. Если принять, что длинная черта означает 1, а короткая 0, то вся надпись оказывается просто рядом натуральных чисел, написанных по двоичной системе. Вот эта надпись:
Двоичная система счисления оказалась удобной для использования в ЭВМ. Использование двоичной системы оказалось наиболее эффективным в электронных схемах: цифры 0 и 1 удобно кодировать уровнями напряжения, соответствующим напряжению на шинах питания, „0“ и „+V“; использование большего количества уровней привело бы к усложнению схем. Хотя были прецеденты создания и троичных ЭВМ.
В двоичной системе счисления используются всего две цифры 0 и 1. Другими словами, двойка является основанием двоичной системы счисления. (Аналогично у десятичной системы основание 10.)
Чтобы научиться понимать числа в двоичной системе счисления, сначала рассмотрим, как формируются числа в привычной для нас десятичной системе счисления.
В десятичной системе счисления мы располагаем десятью знаками-цифрами (от 0 до 9). Когда счет достигает 9, то вводится новый разряд (десятки), а единицы обнуляются и счет начинается снова. После 19 разряд десятков увеличивается на 1, а единицы снова обнуляются. И так далее. Когда десятки доходят до 9, то потом появляется третий разряд – сотни.
Двоичная система счисления аналогична десятичной за исключением того, что в формировании числа участвуют всего лишь две знака-цифры: 0 и 1. Как только разряд достигает своего предела (т.е. единицы), появляется новый разряд, а старый обнуляется.
Попробуем считать в двоичной системе:
1 – это один (и это предел разряда)
11 – это три (и это снова предел)
1.3. Перевод чисел из двоичной системы счисления в десятичную:
1. 10001001 = 1*2^ <7>+ 0*2^ <6>+ 0*2^ <5>+ 0*2^ <4>+ 0*2^ <3>+ 0*2^ <2>+ 0* 2^ <1>+ 0*2^ <0>= 128 + 0 + 0 + 0 + 8 + 0 + 0 + 1 = 137
Т.е. число 10001001 по основанию 2 равно числу 137 по основанию 10. Записать это можно так:
2. 1011_ <2>= 1*2^3 + 0*2*2+1*2^1+1*2^0 =1*8 + 1*2+1=11_
3. 10101010_ <2>= 1*2^ <7>+ 0*2^ <6>+ 1*2^ <5>+ 0*2^ <4>+ 1*2^ <3>+ 0*2^ <2>+ 1*2^ <1>+ 0*2^ <0>= 128 + 32 +8 + 2 = 170_
4. 101101_ <2>= 1*2^ <5>+ 0*2^ <4>+ 1*2^ <3>+ 1*2^ <2>+ 0*2^ <1>+ 1*2^ <0>= 63_
5. 100,101_ <2>= 1*2^ <2>+0*2^ <1>+ 0*2^ <0>+ 1*2^ <-1>+ 0*2^ <-2>+ 1*2^ <-3>= 4 + 2 = 6Элементы оглавления не найдены._
6. 111101_ <2>= 1*2^ <5>+ 1*2^ <4>+ 1*2^ <3>+ 1*2^ <2>+ 0*2^ <1>+ 1*2^ <0>= 32 +16 + 13 = 61_
7. 1001_ <2>= 1*2^ <3>+ 0*2^ <2>+ 0*2^ <1>+ 1*2^ <0>= 9
8. 10011,1_ <2>= 1*2^ <4>+ 0*2^ <3>+ 0*2^ <2>+ 1*2^ <1>+ 1*2^ <0>+ 1*2^ <-1>= 19,5
9. 11101,11_ <2>= 1*2^ <5>+ 1*2^ <4>+ 1*2^ <3>+ 0*2^ <1>+1*2^ <0>+ 1*2^ <-1>= 57,5
10. 100111 = 1*2^ <5>+ 0*2^ <4>+ 0*2^ <3>+1*2^ <2>+ 1*2^ <1>+ 1*2^ <0>= 39
1.4. Перевод десятичного числа в двоичное:
Может потребоваться перевести десятичное число в двоичное. Один из способов – это деление на два и формирование двоичного числа из остатков. Например, нужно получить из числа 77 его двоичную запись:
77 / 2 = 38 (1 остаток)
38 / 2 = 19 (0 остаток)
19 / 2 = 9 (1 остаток)
Собираем остатки вместе, начиная с конца: 1001101. Это и есть число 77 в двоичном представлении. Проверим:
1. 1001101_ <10>= 1*2^ <6>+ 0*2^ <5>+ 0*2^ <4>+ 1*2^ <3>+ 1*2^ <2>+ 0*2^ <1>+ 1*2^ <0>= 64 + 8 + 5 = 77_
2. 49_ <10>= \dfrac < 49 > < 2 >= 110001_
3. 15_ <10>= \dfrac < 49 > < 2 >= 1111_
4. 31_ <10>= \dfrac < 31 > < 2 >= 11111_
5. 0,45_ <10>= \dfrac < 0,45 > < 2 >= 0,11100_
6. 95_ <10>= \dfrac < 95 > <2 >= 1011111_
7. 102_ <10>= \dfrac <102 > < 2 >= 1100110_
8. 58_ <10>= \dfrac < 58 > < 2 >= 110100_
9. 4956_ <10>= \dfrac < 4956 > < 2 >= 101101011100_
10. 125_ <10>= \dfrac < 125 > < 2 >= 10111101_
2. Почему удобна двоичная система?
Стоит отметить, что двоичная система издавна была предметом пристального внимания ученых. Официальное рождение двоичной системы счисления связано с именем Г.В.Лейбница, опубликовавшего в 1703 г. статью, в которой он рассмотрел правила выполнения арифметических действий над двоичными числами. Во время работы ЭВМ постоянно происходит преобразование чисел из десятичной системы счисления в двоичную, и наоборот. Да и человеку, имеющему дело с ЭВМ, часто приходится прибегать к преобразованиям чисел.
Вот, что писал Лаплас об отношении великого немецкого математика Г.В. Лейбница к двоичной (бинарной) системе: «В своей бинарной арифметике Лейбниц видел прообраз творения. Ему представлялось, что единица представляет божественное начало, а нуль – небытиё и что высшее существо создает все сущее из небытия точно таким же образом, как единица и нуль в его системе выражают все числа».
Главное достоинство двоичной системы – простота алгоритмов сложения, вычитания, умножения и деления. Таблица умножения в ней совсем не требуется ничего запоминать, ведь любое число, умноженное на ноль, равно нулю, а умноженное на единицу равно самому себе. И при этом никаких переносов в следующие разряды, а они есть даже в троичной системе счисления.
Если отвлечься от технических деталей, то именно с помощью этих операций и выполняются все операции в компьютере, так как удалось создать надежно работающие технические устройства, которые могут со 100 процентной надежностью сохранять и распознавать не более двух различных состояний (цифр):
— электромагнитные реле (замкнуто/разомкнуто), широко использовались в конструкциях первых ЭВМ;
— участок поверхности магнитного носителя информации (намагничен/ размагничен);
— участок поверхности лазерного диска (отражает/не отражает);
— триггер, может устойчиво находиться в одном из двух состояний, широко используется в оперативной памяти компьютера.
Утверждение двоичной арифметики в качестве общепринятой при конструкции ЭВМ с программным управлением состоялось под влиянием работы Дж. фон Неймана о проекте первой ЭВМ с хранимой в памяти программой. Работа написана в 1946 году.
2.1. Достоинства двоичной системы счисления:
1. Достоинства двоичной системы счисления заключаются в простоте реализации процессов хранения, передачи и обработки информации на компьютере.
2. Для ее реализации нужны элементы с двумя возможными состояниями, а не с десятью.
3. Представление информации посредством только двух состояний надежно и помехоустойчиво.
4. Возможность применения алгебры логики для выполнения логических преобразований.
5. Двоичная арифметика проще десятичной.
2.2. Недостатки двоичной системы счисления:
1. Итак, код числа, записанного в двоичной системе счисления представляет собой последовательность из 0 и 1. Большие числа занимают достаточно большое число разрядов.
В ходе изучения данной темы мы выяснили, что двоичная система счисления намного старше электронных машин. Двоичной системой счисления люди интересуются давно. Особенно сильным это увлечение было с конца 16 до 19 века. Знаменитый Лейбниц считал двоичную систему счисления простой, удобной, красивой. Даже по его просьбе была выбита медаль в честь этой «диадической» системы (так называли тогда двоичную систему счисления).
Двоичная система счисления наиболее проста и удобна для автоматизации.
Наличие в системе всего лишь двух символов упрощает их преобразование в электрические сигналы.
Из любой системы счисления можно перейти к двоичному коду.
Почти все ЭВМ используют либо непосредственно двоичную систему счисления, либо двоичное кодирование какой-либо другой системы счисления.
Но двоичная система имеет и недостатки:
— ею пользуются только для ЭВМ для внутренней и внешней работы;
— быстрый рост числа разрядов, необходимых для записи чисел.
Библиографический список
1. Нестеренко А.В. ЭВМ и профессия программиста. М.: Просвещение, 1990.
2. Решетников В.Н., Сотников А.Н. Информатика – что это? М.: Радио и связь, 1989.
3. Фомин С.В. Системы счисления. М.: Наука, 1987.
4. Информатика: Системы счисления: спецвыпуск, №42 1995.
5. Информатика: Семинар, №2, №3 2006.
6. Информатика: В мир информатики, №8 2007.