любой код на питоне
Шпаргалки по Python — хитрости которые вы не используете!
Многие люди начинают переезжать с версии 2 на 3 из-за Python EOL (Поддержка Python 2.7 прекратиться с 2020 года). К сожалению, часто Python 3 выглядит как Python 2 со скобками. В статье я покажу несколько примеров существующих функций, которыми вы можете пользоваться только в Python 3, с надеждой на то, что это поможет решать ваши текущие и будущие задачи.
Есть вопросы по Python?
На нашем форуме вы можете задать любой вопрос и получить ответ от всего нашего сообщества!
Telegram Чат & Канал
Вступите в наш дружный чат по Python и начните общение с единомышленниками! Станьте частью большого сообщества!
Паблик VK
Одно из самых больших сообществ по Python в социальной сети ВК. Видео уроки и книги для вас!
Все примеры написаны в Python 3.7 и каждая функция содержит минимальную версию Python для этой функции.
F-строки (Python 3.6+)
Сложно делать что-либо без строк в Python и чтобы сохранить адекватность, вам нужно иметь структурированный способ работы со строками. Большая часть людей, работающих с Python, предпочитают метод format python.
Pathlib (Python 3.4+)
F-строки — это отличное решение, но некоторые строки, такие как пути файлов, имеют свои собственные библиотеки, которые заметно упрощают работу. Python 3 предоставляет pathlib в качестве удобной абстракции для работы с путями файлов.
Подсказки типов | Ожидание типа | Type hinting (Python 3.5+)
Спор о том, какое типизирование python лучше — статическое или динамическое — не умолкают и по сей день и у каждого есть свое мнение на этот счет. Это личное дело читателя — когда ему нужно вписывать типы, но мне кажется что вы как минимум должны знать о том, что Python 3 поддерживает подсказки типов.
Перечисления enum (Python 3.4+)
Python 3 поддерживает простой способ написания перечислений через класс Enum. Этот класс можно назвать удобным способом инкапсуляции списка констант, чтобы они не были разбросаны по всему коду без структуры.
Перечисление — это набор символических имен (членов), связанных уникальным, постоянным значением. С перечислением, члены можно сравнить по идентичности, а само перечисление может повторяться.
Встроенный LRU кэш (Python 3.2+)
Внизу показана простая функция Фибоначчи, которая, как мы знаем, выиграет от кэширования, так как выполняет одну и ту же работу несколько раз через рекурсию.
Теперь мы можем использовать lru_cache для оптимизации (эта техника оптимизации называется меморизация). Время выполнения варьирует от секунд до наносекунд.
Повторяемая расширенная распаковка (Python 3.0+)
Здесь код будет говорить сам за себя (документация):
Классы данных (Python 3.7+)
Та же реализация класса Armor при помощи классов данных.
Пространства имен (Python 3.3+)
Один из способов структуризации кода Python заключается в пакетах (папки с файлом __init__.py ). Пример ниже предоставлен официальной документацией Python.
Впрочем, как многие пользователи заметили, это может быть не так просто, как я указал в этом разделе. Согласно спецификации 420 в PEP — файл __init__.py все еще может понадобиться для обычных пакетов, удаление его из структуры папки превратит его в пакет пространства имен, который включает в себя дополнительные ограничения, официальная документация нативных пакетов пространств имен показывают хорошие примеры тому, а также в них озвучиваются названия всех ограничений.
Подведем итоги
Как и практически любой другой список в интернете, этот нельзя назвать завершенным. Надеюсь в этой статье вы нашли хотя бы одну функцию Python 3, которой вы ранее не пользовались, и это поможет вам писать более чистый и интуитивный код.
Являюсь администратором нескольких порталов по обучению языков программирования Python, Golang и Kotlin. В составе небольшой команды единомышленников, мы занимаемся популяризацией языков программирования на русскоязычную аудиторию. Большая часть статей была адаптирована нами на русский язык и распространяется бесплатно.
E-mail: vasile.buldumac@ati.utm.md
Образование
Universitatea Tehnică a Moldovei (utm.md)
25 полезных однострочников Python, которые вы должны знать
Это сделает Python великим
В тот день, когда я написал свою первую строчку кода на Python, я был очарован простотой, популярностью и крутостью его однострочников. В своем блоге я хочу представить несколько однострочников на Python.
1. Сменка двух переменных
2. Множественные присвоения переменных
Вы можете использовать запятые и переменные, чтобы назначать нескольким переменным значения за раз. Используя этот метод, вы даже можете назначить несколько типов данных var за раз. Вы можете использовать список для присвоения значений переменным. Ниже приведен пример присвоения нескольких значений разным переменным из списка.
3. Сумма четных чисел в списке
4. Удаление нескольких элементов из списка
5. Чтение файлов
Здесь мы используем понимание того, как устроен список. Сначала мы открываем текстовый файл и с помощью цикла for читаем строку за строкой. В итоге с помощью strip убираем все лишнее пространство. Но есть один более простой и короткий способ сделать то же самое, используя только функцию списка.
6. Запись данных в файл
7. Создание списков
Мы также можем создать список строк, используя тот же метод.
8. Mapping списков, или изменение типа данных в списке
9. Создание набора
Метод, который мы использовали для создания списков, также можно использовать для создания наборов. Давайте создадим набор с помощью метода, который возвращает квадратный корень всех четных чисел в диапазоне.
10. Fizz Buzz
Это тест, в котором нам нужно написать программу, что печатает числа от 1 до 100. Но для чисел, кратных трем, выведет «Fizz» вместо числа, а для кратных пяти выведет «Buzz». (если кратно и трем, и пяти, то выводится, соответственно, FizzBuzz).
Похоже, нам нужно использовать циклы и несколько операторов if-else. Если вы попытаетесь сделать это на любом другом языке, то вам, возможно, придется написать до 10 строк кода. Но используя python, мы сможем реализовать FizzBuzz всего одной строкой кода.
В приведенном выше коде мы используем понимание списка для запуска цикла от 1 до 20, а затем на каждой итерации цикла мы проверяем, делится ли число на 3 или 5. Если да, то мы заменяем число на Fizz или Buzz соответственно (при выполнении обоих условий заменим число на FizzBuzz).
11. Палиндром
12. Целые числа, разделенные пробелами, в списке
13. Лямбда-функция
Лямбда-функция может принимать любое количество аргументов, но может иметь только одно __выражение.
14. Проверить наличие числа в списке
15. Вывод паттернов
16. Нахождение факториала
17. Ряд Фибоначчи
18. Простое число
19. Нахождение максимального числа
В приведенном выше коде с использованием лямбда-функции мы проверяем условие сравнения и в соответствии с ним возвращаем максимальное число.
20. Линейная алгебра
Иногда нам нужно увеличить числа в списке в 2 или 5 раз. Код ниже покажет, как это сделать.
21. Транспонировать матрицу
Если вам нужно преобразовать все строки в столбцы и наоборот, в python вы можете транспонировать матрицу всего в одну строку кода, используя функцию zip.
22. Подсчет нахождений паттерна
Это важный и рабочий метод, когда нам нужно знать количество повторений паттерна в тексте. В python есть библиотека re, которая сделает эту работу за нас.
23. Замена текста другим текстом
24. Симуляция подбрасывания монеты
Это может быть не так важно, но может быть очень полезно, когда вам нужно сгенерировать случайный выбор из заданного набора вариантов.
25. Генерация групп
Я поделился всеми полезными и важными однострочниками, которые я знаю. Если вы знаете какие-то ещё, поделитесь в комментариях.
Примеры программ на языке Python
В этой статье собраны примеры небольших программ на языке программирования Python, демонстрирующих его синтаксис и некоторые из возможностей.Задание
Содержание
Нахождение 10 наиболее частых слов на web странице [ править ]
Данный пример чисто демонстрационный, так как его можно значительно улучшить.
Текст для версии 3.7.1
Примеры работы с последовательностями [ править ]
Иллюстрируют особенности индексации элементов и срезов: при взятии среза нумеруются не сами элементы, а промежутки между ними.
Функции подобные range() поддерживают то же правило (для версий языка 2.x):
Реализация перегрузки функций [ править ]
Это пример простой реализации поддержки перегрузки функций на Python.
Управление контекстом выполнения [ править ]
Следующий пример из PEP343 иллюстрирует применение оператора with для защиты блока кода от одновременного выполнения двумя потоками:
Генератор чисел Фибоначчи [ править ]
Пример генератора чисел Фибоначчи и его использования:
Альтернативный синтаксис доступа к элементам словаря [ править ]
Можно определить словарь, который в дополнение к обычному синтаксису доступа к значению по ключу dлюбой код на питоне может предоставлять синтаксически более наглядный доступ к атрибуту d.key в случае алфавитно-цифровых ключей:
Функтор с генерацией байтокода [ править ]
Пример эффективной реализации функтора, основанный на генерации байтокода во время исполнения. Этот пример демонстрирует следующие возможности/особенности Python:
Это только пример, он реализует всего одну операцию — сложение и имеет несколько других ограничений.
Код SlowFunctor можно посмотреть здесь.
Приведенные значения времени следует рассматривать только в сравнении друг с другом.
ipython — расширение интерпретатора Python для интерактивной работы.
Используя эту технику, можно создать полноценный функтор, добавив функции для других операций ( __sub__, __div__ и другие) и расширив его на случай нескольких входных функций с разными аргументами.
Транспонирование матрицы [ править ]
Пример лаконичной реализации операции транспонирования матриц с использованием парадигмы функционального программирования.
Нахождение Факториала [ править ]
Решение квадратного уравнения [ править ]
Простая программа для решения квадратных уравнений (то есть вида: ax 2 +bx+c=0). Даются небольшие пояснения, каким образом уравнение решается в том или ином случае (например, для неполных квадратных уравнений).
Что такое дробь [ править ]
Вычисление числа Пи [ править ]
Тренажёр для изучения координат [ править ]
Программа, интересная и как тренажёр для учебной работы с координатами (5-7 класс) и как пример несложной программы, которую может написать начинающий программист (8-9 класс)
Путеводитель по Python. Пишем великолепный код
Kenneth Reitz на PyCon в Австралии (2012)
Структурируйте свой проект
Под структурой мы подразумеваем решения, которые Вы приняли в отношении того, как Ваш проект сможет достичь поставленных целей. Мы должны рассмотреть как лучше использовать функциональные особенности языка Python, чтобы писать чистый и эффективный код. С практической точки зрения, понятие «структура» означает создание (написание) чистого когда в котором, логика и зависимости так же ясны как организация файлов и папок в файловой системе.
Какие функции должны быть перемещены в какие модули? Как пойдет поток данных через проект? Какие особенности и функции могут быть сгруппированы вместе и изолированы? Отвечая на подобные вопросы, Вы можете начать планировать как будет выглядеть готовый продукт.
В данном разделе мы внимательнее посмотрим на систему модулей и импортов в Python, т.к. они являются центральным элементом в обеспечении структурирования Вашего проекта. Затем, мы обсудим различные точки зрения о том, как построить код, который может быть расширен и надежно протестирован.
Структура решает
Благодаря тому, что импорты и модули обрабатываются в Python, сравнительно просто структурировать проект написанный на этом языке. Слово «просто», в данном контексте означает, что Вы не будете создавать лишних ограничений, и то, что модель импортируемого модуля легко понять. Таким образом, Вам остается сконцентрироваться на чисто архитектурной задаче, а именно трудиться над созданием различных частей Вашего проекта и их взаимодействии.
Модули
Модули в Python являются одним из основных слоев абстракции которые доступны, и, вероятно, являются наиболее нативными для языка. Уровни абстракции позволяют разделить код на части обрабатывающие соответствующие данные и содержащие какой-либо функционал.
Чтобы придерживаться стиля руководства, старайтесь давать модулям короткие имена, содержащие только буквы нижнего регистра и уверяться, что Вы не используете специальные символы, такие как точка (.) или знак вопроса (?). Так как имя файла подобное my.spam.py, Вы должны избегать. Именование таким образом будет мешать Python искать модули.
В данном примере Python ожидает найти » spam.py » в папке по имени » my «, которой не существует. Существует пример того, как точечная нотация должна быть использована в документах Python.
Помимо некоторых ограничений именования, ничего больше не требуется файлу чтобы стать Python-модулем, но механизм импорта необходимо понимать для того, чтобы использовать эту концепцию должным образом и избежать некоторых проблем.
После того, как module.py будет найден, интерпретатор Python выполнит модуль в изолированной области видимости. Любое объявление верхнего уровня в файле module.py будет выполнено, включая вложенные импорты, если таковые имеются. Объявления функций и классов сохранятся в словарь модуля.
Затем переменные модуля, функции и классы будут доступны для вызова через пространство имен модуля — центральное понятие в программировании, которое особенно мощно и полезно в языке Python.
Во многих языках, файл включается напрямую используя препроцессор чтобы найти весь код в файле и «скопировать» его в код вызывающего модуля. Это отличается от поведения языка Python, в котором подключаемый код изолирован в области видимости своего модуля, что означает, что Вы можете не беспокоиться о том, что включение кода может иметь нежелательные последствия, например, переопределение существующих функций с тем же именем.
Использование from module import func это способ точно указать функцию, которую вы хотите импортировать и поместить в глобальную область видимости. А так же это менее вредно для кода нежели » import * «, т.к. тут ясно видно что импортируется в глобальную область видимости, преимущество более простой записи import module заключается в экономии нажатий клавиш.
22 полезных примера кода на Python
Python — один из самых популярных языков программирования, чрезвычайно полезный и в решении повседневных задач. В этой статье я вкратце расскажу о 22 полезных примерах кода, позволяющих воспользоваться мощью Python.
Некоторые из примеров вы могли уже видеть ранее, а другие будут новыми и интересными для вас. Все эти примеры легко запоминаются.
1. Получаем гласные
2. Первая буква в верхнем регистре
Этот пример используется для превращения каждой первой буквы символов строки в прописную букву. Он работает со строкой из одного или нескольких символов и будет полезен при анализе текста или записи данных в файл и т.п.
3. Печать строки N раз
Этот пример может печатать любую строку n раз без использования циклов Python.
4. Объединяем два словаря
Этот пример выполняет слияние двух словарей в один.
5. Вычисляем время выполнения
Этот пример полезен, когда вам нужно знать, сколько времени требуется для выполнения программы или функции.
6. Обмен значений между переменными
Это быстрый способ обменять местами две переменные без использования третьей.
7. Проверка дубликатов
Это самый быстрый способ проверки наличия повторяющихся значений в списке.
8. Фильтрация значений False
9. Размер в байтах
Этот пример возвращает длину строки в байтах, что удобно, когда вам нужно знать размер строковой переменной.
10. Занятая память
Пример позволяет получить объём памяти, используемой любой переменной в Python.
11. Анаграммы
Этот код полезен для проверки того, является ли строка анаграммой. Анаграмма — это слово, полученное перестановкой букв другого слова.
12. Сортировка списка
Этот пример сортирует список. Сортировка — это часто используемая задача, которую можно реализовать множеством строк кода с циклом, но можно ускорить свою работу при помощи встроенного метода сортировки.
13. Сортировка словаря
14. Получение последнего элемента списка
15. Преобразование разделённого запятыми списка в строку
Этот код преобразует разделённый запятыми список в единую строку. Его удобно использовать, когда нужно объединить весь список со строкой.
16. Проверка палиндромов
Этот пример показывает, как быстро проверить наличие палиндромов.
17. Перемешивание списка
18. Преобразование строки в нижний и верхний регистры
19. Форматирование строки
Этот код позволяет форматировать строку. Под форматированием в Python подразумевается присоединение к строке данных из переменных.
20. Поиск подстроки
Этот пример будет полезен для поиска подстроки в строке. Я реализую его двумя способами, позволяющими не писать много кода.
21. Печать в одной строке
Мы знаем, что функция print выполняет вывод в каждой строке, и если использовать две функции print, они выполнят печать в две строки. Этот пример покажет, как выполнять вывод в той же строке без перехода на новую.
22. Разбиение на фрагменты
Этот пример покажет, как разбить список на фрагменты и разделить его на меньшие части.
На правах рекламы
Серверы для разработчиков — выбор среди обширного списка предустановленных операционных систем, возможность использовать собственный ISO для установки ОС, огромный выбор тарифных планов и возможность создать собственную конфигурацию в пару кликов, активация любого сервера в течение минуты. Обязательно попробуйте!