можно ли поменять генетический код

Пресс-центр

Как передать ребенку «хорошие» гены

Что нужно знать родителям о «хороших» и «плохих» генах, наследственных болезнях и что мамы и папы могут сделать для здоровья будущего ребенка.

Как возникают наследственные болезни

можно ли поменять генетический код. blobid1536131951190. можно ли поменять генетический код фото. можно ли поменять генетический код-blobid1536131951190. картинка можно ли поменять генетический код. картинка blobid1536131951190. Что нужно знать родителям о «хороших» и «плохих» генах, наследственных болезнях и что мамы и папы могут сделать для здоровья будущего ребенка.Если генетический код нарушается, то и белок получается «неправильным», либо вырабатывается в слишком большом или слишком малом количестве. Это может привести к расстройствам важных процессов в организме. Так возникают наследственные болезни.

Если изменение произошло в определенном гене и нарушено производство определенного белка, то мутация называется генной. Иногда возникают более грубые нарушения – хромосомные мутации. Самый знаменитый пример хромосомной болезни – синдром Дауна, когда у человека есть добавочная – 21 – хромосома.

Некоторые генные мутации передаются по наследству от родителей к детям. Другие возникают впервые, если у родителя не было нарушения, и оно впервые произошло в яйцеклетке или сперматозоиде. Хромосомные болезни обычно не наследуются: они возникают по разным причинам до, во время или после оплодотворения.

Когда важно посетить генетика

В некоторых семьях повышен риск наследственных болезней. Будущим родителям стоит посетить клинического генетика до наступления беременности в следующих случаях:

Иногда помогает родословная

Из школьного курса биологии многие помнят, что половину генов ребенок получает от мамы, половину – от папы. Следуя той же логике, можно предположить, что от каждой бабушки и каждого дедушки ему достается по четверти генотипа, и можно проследить, от кого ребенок получил половинку той или иной хромосомы.

На деле все не так просто. Яйцеклетка получает новый набор хромосом – точно такого нет ни в одной клетке тела женщины. Одни участки новой хромосомы могут оказаться бабушкиными, другие – дедушкиными. И в каждом случае набор получается уникальным – поэтому (и по ряду других причин) родные братья и сестры не становятся копией своих родителей и друг друга, если только они – не однояйцевые близнецы.

В каждом человеке сильно перемешаны гены от разных поколений. Источник некоторых наследственных заболеваний еще можно проследить, составив родословную. Но если «плохих» генов много, и они не проявляют себя явно, вызывают лишь предрасположенность к тем или иным болезням – понять, откуда они, невозможно. Поэтому и обвинять кого-то из членов семьи в том, что от него ребенку достались «плохие» гены, бессмысленно.

Папы после 50 чаще делают генные «опечатки»

Чем старше родители, тем выше риск того, что их ребенок родится с наследственным заболеванием – это справедливо и для мужчин, и для женщин. В зависимости от того, у кого из родителей произошел сбой, у ребенка могут возникать разные проблемы.

Организм мужчины постоянно производит новые сперматозоиды – до 1500 в секунду. Как бы тщательно ни копировала себя ДНК, в ней могут быть «опечатки», вероятность которых растет вместе с количеством клеточных делений. В мужских сперматозоидах со временем возникают генные мутации. Количество хромосом не нарушено, но в гене может быть ошибка, из-за которой производится неправильный белок.

У отцов старше 50 лет в три раза чаще, чем у 25-летних, рождаются дети, страдающие шизофренией, и в шесть раз чаще, чем у 27-летних, – дети с редким генетическим заболеванием, которое называется синдромом Апера.

Беременная «носит» в своем животе внуков и внучек

У женщин риск наследственных болезней возрастает после 35 лет. Когда девочка появляется на свет, в ее яичниках уже есть половые клетки. Беременная женщина уже носит в своем животе будущих внуков и внучек.

Половые клетки в яичниках долго находятся в «спящем» состоянии, редко делятся, и если в них возникают ошибки, то обычно «по-крупному», на уровне хромосом. У матерей старше 35 лет повышен риск рождения ребенка с синдромом Дауна, у них чаще случаются выкидыши.

В клетках человека есть собственные «электростанции» – митохондрии, они постепенно разрушаются. Чем дольше яйцеклетка «спит» в яичнике, тем «слабее» становятся ее митохондрии. А ведь организм ребенка получает их именно из яйцеклетки, все митохондрии в организме каждого из нас – материнские. Если плод получает от матери «слабые» митохондрии, они копируют себя во всех клетках организма. Есть данные о том, что из-за этого сокращается продолжительность жизни потомства.

Но это не означает, что такая проблема будет у каждой «поздней» мамы. Многие рожают вполне здоровых малышей с «хорошими» генами. Но родителям старшего возраста стоит помнить о повышенных рисках, более тщательно подходить к планированию беременности.

Можно ли выбрать глаз и уровень интеллекта будущего ребенка?

Процедура ЭКО часто дополняется предимплантационной генетической диагностикой (ПГД). Обычно врачи-репродуктологи исследуют гены эмбрионов до подсадки в матку на предмет хромосомных и генных нарушений. Задача – выбрать самого здорового будущего малыша.

А можно ли по генам определить пол будущего ребенка, посмотреть, какой у него будет цвет глаз, волос, уровень интеллекта или физического развития? Оказывается, можно. Но в большинстве стран это запрещено. Врачи помогут зачать здорового ребенка, но заниматься искусственной селекцией не станут.

Если зачатие произошло естественным путем, гены будущего ребенка тоже можно проверить. Для этого используют неинвазивное пренатальное тестирование (НИПТ).

Гены, которые действуют на расстоянии

Как мы уже разобрались, каждый родитель передает ребенку половину своих хромосом. Казалось бы, вторая половина генов, которая не передалась малышу, не имеет к нему отношения. В 2018 году ученые провели исследование, которое показало, что это не так.

Было установлено, что гены мамы и папы, которые не были переданы ребенку, примерно на 30% влияют на уровень его образования. Как гены могут действовать на расстоянии? Если разобраться, в этом нет ничего удивительного.

Когда женщина готовится к зачатию, вынашивает ребенка, затем вскармливает его грудью, в ее организме продолжают функционировать оба набора хромосом. Ребенку передался лишь один из них, но и второй оказывает на него влияние на через материнский организм, грудное молоко. От этого в будущем зависят привычки питания, здоровье.

Отец не носит ребенка в животе и не кормит грудью. Он влияет на то, каким вырастет ребенок, через воспитание, личный пример.

Не хромосомами едиными

Из всего вышесказанного следует, что у родителей есть не так много способов повлиять на гены будущего ребенка. Но ведь на наследственности свет клином не сошелся. Многое зависит от внешней среды.

Характер и личность формируются благодаря воспитанию, высокий интеллект – обучению, а рост и вес зависят от питания. Здоровье и продолжительность жизни тоже на роду не написаны, если заботиться о своем организме. И это как раз то, на что мама и папа могут повлиять. Хорошие привычки закладываются в детстве.

Источник

Редактирование людей: как и зачем ученые проводят операции с геномом

Каждый из живых организмов на Земле носит в клетках наследственный материал своих предков. Эти данные называются геномами, и они нужны непосредственно для создания и поддержания деятельности организма. Генная инженерия работает над изменениями в наследственной информации. Рассказываем, что происходит с редактированием геномов прямо сейчас.

Читайте «Хайтек» в

Применение генной инженерии в научных исследованиях

Для изучения функции того или иного гена может быть применён нокаут гена. Так называется техника удаления одного или большего количества генов, что позволяет исследовать последствия подобной мутации.

Для нокаута синтезируют такой же ген или его фрагмент, измененный так, чтобы продукт гена потерял свою функцию. Основные методы реализации: цинковый палец, морфолино и TALEN.

Для получения нокаутных мышей полученную генно-инженерную конструкцию вводят в эмбриональные стволовые клетки, где конструкция подвергается соматической рекомбинации и замещает нормальный ген, а измененные клетки имплантируют в бластоцисту суррогатной матери. У плодовой мушки дрозофилы мутации инициируют в большой популяции, в которой затем ищут потомство с нужной мутацией. Сходным способом получают нокаут у растений и микроорганизмов.

Логичным дополнением нокаута является искусственная экспрессия, то есть добавление в организм гена, которого у него ранее не было. Этот способ генной инженерии также можно использовать для исследования функции генов. В сущности процесс введения дополнительных генов таков же, как и при нокауте, но существующие гены не замещаются и не повреждаются.

Используется, когда задачей является изучение локализации продукта гена. Одним из способов мечения является замещение нормального гена на слитый с репортерным элементом, например, с геном зеленого флуоресцентного белка GFP. Этот белок, флуоресцирующий в голубом свете, используется для визуализации продукта генной модификации.

Хотя такая техника удобна и полезна, её побочными следствиями может быть частичная или полная потеря функции исследуемого белка. Более изощрённым, хотя и не столь удобным методом является добавление к изучаемому белку не столь больших олигопептидов, которые могут быть обнаружены с помощью специфических антител.

В таких экспериментах задачей является изучение условий экспрессии гена. Особенности экспрессии зависят прежде всего от небольшого участка ДНК, расположенного перед кодирующей областью, который называется промотор и служит для связывания факторов транскрипции.

Этот участок вводят в организм, поставив после него вместо собственного гена репортерный, например, GFP или фермента, катализирующего легко обнаруживаемую реакцию. Кроме того, что функционирование промотора в тех или иных тканях в тот или иной момент становится хорошо заметным, такие эксперименты позволяют исследовать структуру промотора, убирая или добавляя к нему фрагменты ДНК, а также искусственно усиливать его функции.

Зачем нужна генная инженерия человека

В применении к человеку генная инженерия могла бы применяться для лечения наследственных болезней. Однако, технически, есть существенная разница между лечением самого пациента и изменением генома его потомков.

Задача изменения генома взрослого человека несколько сложнее, чем выведение новых генноинженерных пород животных, поскольку в данном случае требуется изменить геном многочисленных клеток уже сформировавшегося организма, а не одной лишь яйцеклетки-зародыша. Для этого предлагается использовать вирусные частицы в качестве вектора.

Вирусные частицы способны проникать в значительный процент клеток взрослого человека, встраивая в них свою наследственную информацию; возможно контролируемое размножение вирусных частиц в организме. При этом для уменьшения побочных эффектов учёные стараются избегать внедрения генноинженерных ДНК в клетки половых органов, тем самым избегая воздействия на будущих потомков пациента.

Также стоит отметить значительную критику этой технологии в СМИ: разработка генноинженерных вирусов воспринимается многими как угроза для всего человечества.

С помощью генотерапии в будущем возможно изменение генома человека. В настоящее время эффективные методы изменения генома человека находятся на стадии разработки и испытаний на приматах.

Долгое время генетическая инженерия обезьян сталкивалась с серьёзными трудностями, однако в 2009 году эксперименты увенчались успехом: в журнале Nature появилась публикация об успешном применении генноинженерных вирусных векторов для излечения взрослого самца обезьяны от дальтонизма. В этом же году дал потомство первый генетически модифицированный примат (выращенный из модифицированной яйцеклетки) — обыкновенная игрунка ( Callithrix jacchus).

Хотя и в небольшом масштабе, генная инженерия уже используется для того, чтобы дать шанс забеременеть женщинам с некоторыми разновидностями бесплодия. Для этого используют яйцеклетки здоровой женщины. Ребёнок в результате наследует генотип от одного отца и двух матерей.

Однако возможность внесения более значительных изменений в геном человека сталкивается с рядом серьёзных этических проблем. В 2016 в США группа учёных получила одобрение на клинические испытания метода лечения рака с помощью собственных иммунных клеток пациента, подвергаемых генной модификации с применением технологии CRISPR/Cas9.

В конце 2018 года в Китае родились двое детей, геном которых был искусственно изменён (выключен ген CCR5) на стадии эмбриона методом CRISPR/Cas9, в рамках исследований, проводимых с 2016 года по борьбе с ВИЧ. Один из родителей (отец) был ВИЧ-инфицированным, а дети, по заявлению, родились здоровыми.

Поскольку эксперимент был несанкционированным (до этого все подобные эксперименты на человеческом эмбрионе разрешались только на ранних стадиях развития с последующим уничтожением экспериментального материала, то есть без имплантации эмбриона в матку и рождением детей), ответственный за него учёный не предоставил доказательств своим заявлениям, которые были сделаны на международной конференции по редактированию генома.

В конце января 2019 года властями Китая были официально подтверждены факты проведения данного эксперимента. Тем временем учёному было запрещено заниматься научной деятельностью и он был арестован.

Как редактируют человеческий геном?

«Цинковые пальцы» встречаются и в составе человеческих белков. Благодаря этому методу можно сконструировать цепь ZFN так, что она будет узнавать определённый участок ДНК. Это дает возможность точечного воздействия на заданные участки в составе сложных геномов.

Домены «цинковые пальцы» встречаются в составе человеческих факторов транскрипции – белков, регулирующих процесс синтеза РНК с матрицей ДНК. При создании искусственных нуклеаз можно сконструировать цепочку из «цинковых пальцев» так, что она будет узнавать определенный участок ДНК.

Если такая цепочка будет достаточно длинной, она может распознавать относительно протяженные последовательности ДНК, состоящие из ряда тринуклеотидных фрагментов. Это означает реальную возможность точечного воздействия на заданные участки в составе больших сложных геномов.

Однако у метода «цинковых пальцев» обнаружились и серьезные недостатки: во-первых, это не вполне строгое распознавание тринуклеотидных повторов, что приводит к заметному числу расщеплений ДНК в «нецелевых» участках.

Во-вторых, метод оказался весьма трудозатратным и дорогостоящим, поскольку для каждой последовательности ДНК необходимо создать свою оптимизированную белковую структуру zinc-finger нуклеазы. Поэтому система «цинковые пальцы» широкого распространения не получила.

В 2011 году журнал Nature Methods назвал систему TALEN (Transcription Activator-like Effector Nucleases) «методом года» благодаря широкому спектру возможных применений в разных областях фундаментальной и прикладной науки.

TALEN — один из способов направленного внесения разрыва в ДНК с последующим его «залечиванием» — для выключения генов у мышей. Сразу после них эту технологию применили для внесения в мышиный геном мутации, приводящей к развитию одного из наследственных синдромов. Авторам метода моделирования генетически обусловленных болезней удалось не только «испортить» мышиный геном, но и исправить его обратно.

Метод обеспечивает точное воздействие на заданные участки ДНК и может быть использован практически в любой современной молекулярно-биологической лаборатории.

В основе этой системы — особые участки бактериальной ДНК — CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats, или короткие палиндромные кластерные повторы). Разделяют эти повторы спейсеры — короткие фрагменты чужеродной ДНК. Последние встраиваются в геном после того, как ДНК рекомбинирует с её геномом.

Примеры редактирования человека

Заболевание 44-летнего жителя Аризоны Брайана Мадо проявилось еще в раннем детстве. Оно неизлечимо и наследуют его в основном мужчины. Мукополисахаридоз II типа — это метаболическое расстройство: у людей с ним есть мутация в гене, ответственном за производство фермента, который участвует в расщеплении сложных углеводов. В итоге они накапливаются в клетках и вызывают многочисленные патологии органов.

Мужчина решил принять участие в клиническом испытании нового метода — генной терапии. Это лишь первая фаза исследования, а всего до регистрации терапии (то есть до разрешения применять этот метод для всех больных с синдромом Хантера) их должно быть три.

Метод, который использовали в случае Брайана Мадо, позволяет редактировать геном прямо в теле человека — и при этом достаточно точно попадать в конкретный участок ДНК. Редактирование происходит с помощью так называемых «цинковых пальцев».

Китайский исследователь Хэ Цзянькуй отредактировал геномы человеческих эмбрионов перед процедурой искусственного оплодотворения, в результате чего на свет появились двое детей с измененной ДНК.

С помощью системы CRISPR/Cas9 исследователь отредактировал геномы эмбрионов семи пар во время репродуктивного лечения. В результате одной из беременностей от здоровой матери и ВИЧ-инфицированного отца родились две девочки-двойняшки с измененной ДНК. Хэ Цзянькуй пояснил, что удалил у детей ген CCR5, благодаря чему они получили пожизненный иммунитет к ВИЧ.

Для восстановления зрения можно использовать оптогенетические технологии, с помощью которых работой нейронов можно управлять с помощью светочувствительных белков бактерий и вспышек лазера.

Руководствуясь этой идеей, биологи создали вирус, который может проникать в ганглионарные нейроны. Эти нервные клетки отвечают за передачу сигналов из сетчатки в мозг человека. Попавший в ганглионарный нейрос вирус заставляет его производить подобные сигнальные молекулы. Однако эта процедура не возвращает зрение сама по себе, так как белки бактерий реагируют на свет не так, как палочки и колбочки сетчатки.

Чтобы решить эту проблему, профессор Базельского университета Ботонд Роска и профессор Питтсбургского университета Хосе Сахель создали специальные очки, которые преобразуют поступающие в них изображение в понятный мозгу формат и стимулируют ганглионарные клетки вспышками лазера. В результате пациент может видеть силуэты крупных предметов и объектов и совершать другие сложные действия

Источник

Эксперименты с геномом: Зачем редактируют людей?

В конце ноября мир облетела весть о том, что в Китае появились на свет трансгенные дети. О чем идет речь, были ли еще подобные эксперименты, и почему общество не всегда приветствует изменение генома человека?

Ученый Хе Цзянькуй (He Jiankui) из города Шэньчжэнь заявил, что создал генетически модифицированные эмбрионы, а женщина, которая их получила, забеременела и недавно родила двух девочек. Перед открытием научной конференции в Гонконге Хе Цзянькуй также рассказал коллегам, что подсаживал измененные эмбрионы семерым бесплодным женщинам, но выносила и родила только одна.

Каких-либо подтверждений в научной литературе этому факту пока нет, однако ученый подтвердил свои слова в интервью агентству Associated Press.

Доктор Хе сообщил журналистам, что им был создан эмбрион, геном которого отредактирован таким образом, что в случае попадания вируса иммунодефицита человека (ВИЧ) в организм человек не будет носителем этой инфекции, и у него не разовьется СПИД.

Сообщается, что после широкой огласки этого факта собственный университет приостановил деятельность ученого, в руководстве научного учреждения заявили, что ничего не знают об эксперименте. Но эта информация спровоцировала очередную острую дискуссию о законодательном регулировании таких экспериментов и их моральной стороне.

можно ли поменять генетический код. 90%D1%80%D1%88%D1%8C. можно ли поменять генетический код фото. можно ли поменять генетический код-90%D1%80%D1%88%D1%8C. картинка можно ли поменять генетический код. картинка 90%D1%80%D1%88%D1%8C. Что нужно знать родителям о «хороших» и «плохих» генах, наследственных болезнях и что мамы и папы могут сделать для здоровья будущего ребенка.Хе Цзянькуй. Фото: www.globallookpress.com

Это недобросовестная практика. эксперименты на людях — это аморально или этически необоснованно,

— заявил в интервью агентству AP доктор Киран Мусунуру (Kiran Musunuru) из Университета Пенсильвании, эксперт по генному редактированию и редактор журнала о генетике.

Это слишком преждевременно, — считает доктор Эрик Топол (Eric Topol), глава Научно-исследовательского института Скриппса в Калифорнии. — Тут мы, по сути, создаем «инструкцию по эксплуатации» человеческого существа. Это серьезная задача.

Другой известный ученый из Гарвардского университета Джордж Черч (George Church) встал на защиту генного редактирования как средства от ВИЧ. Он назвал вирус крупнейшей и растущей угрозой здоровью людей. Иными словами, ученый считает возможной модификацию человека для защиты от вируса уже на данном этапе развития медицины.

Другие наблюдатели задаются вопросом о том, насколько обоснованно вмешательство в геном в этом конкретном случае? Ученые давно работают над созданием вакцины против ВИЧ, но даже ее испытания — процедура небезопасная.

Однако китайский эксперимент на реальных людях — не первая попытка внесения изменений в геном человека.

Репродуктивная медицина

В конце прошлого века мир облетела сенсация: ученые из штата Нью-Джерси в США помогли родиться детям, имеющим ДНК трех родителей.

Действительно, в Медицинском центре Института репродуктивной медицины и репродуктологии Святого Варнавы благодаря методу так называемой ооплазменной трансплантации в 1997 году на свет появились 15 здоровых младенцев. Но речь шла о новом способе лечения бесплодия, чуть более усовершенствованном ЭКО. Цитоплазму (желеобразный материал, окружающий ядро клетки) трансплантировали из донорской яйцеклетки в яйцеклетку бесплодной женщины, которую уже затем оплодотворили и подсадили обратно в организм будущей матери. Таким образом, считают ученые, они помогли забеременеть женщинам, имеющим дефект яйцеклетки.

Споры о том, является ли эта технология недопустимым вмешательством в геном, продолжаются.

Противники эксперимента говорят о том, что с ооплазмой в яйцеклетку могут быть внесены донорские митохондрии. Эти компоненты клетки обеспечивают ее энергетический обмен и обладают собственными генами, то есть в данном случае генами третьего лица. Отсюда и возник вызвавший споры тезис: «две матери — один отец».

Модифицированные космонавты

Много лет ведутся дискуссии и о том, можно ли проводить генетический отбор среди людей тех или иных профессий. Или вообще как-то изменять их геном для повышения уровня их профессионализма, когда такое станет возможным.

Производить отбор по ДНК среди космонавтов предлагает известный генетик Крейг Вентер, руководивший проектом по расшифровке генома человека, апологет синтетической биологии и директор собственного института J. Craig Venter Institute. «Генные технологии могут оказаться очень полезными в процессе отбора космонавтов, производимом НАСА», — считает Вентер, которого несколько лет назад цитировал портал space.com. По его мнению, НАСА могло бы сканировать геномы кандидатов на полет, чтобы выбрать идеального космонавта. Если у человека обнаружатся гены, кодирующие восстановление костной ткани, то это будет фактором, влияющим на отбор, так как разрушение костей является самым типичным побочным эффектом пребывания в невесомости.

можно ли поменять генетический код. 90%D0%B2%D1%82%D1%84. можно ли поменять генетический код фото. можно ли поменять генетический код-90%D0%B2%D1%82%D1%84. картинка можно ли поменять генетический код. картинка 90%D0%B2%D1%82%D1%84. Что нужно знать родителям о «хороших» и «плохих» генах, наследственных болезнях и что мамы и папы могут сделать для здоровья будущего ребенка.Фото: ESB Professional / Shutterstock.com

Вентер также заявил о возможности изменять геном космонавтов с тем, чтобы они легче справлялись со сложностями космического полета. Например, бактерия Deinococcus radiodurans выдерживает (ее ДНК восстанавливается) уровень радиации в семь тысяч раз выше того, который убивает человека. Если ученые смогут перенести ее ДНК в геном космонавта, люди, как он считает, забудут о проблеме сильной солнечной радиации в космосе.

Генная терапия

В последние годы большую популярность также набирает генная терапия, то есть лечение тяжелых заболеваний при помощи генной инженерии. И это напрямую связано с внесением направленных изменений в геном человека. В медицинской литературе описаны различные способы доставки «исправленных» генов в организм человека, если доказано, что какой-то ген, имеющий дефект, приводит к развитию заболевания. Специалисты используют для этого кровь самого человека, клетки других органов и даже аэрозоли.

Как правило, при разработке и подборе генной терапии для тяжелых болезней ученые среди прочего выясняют: будет ли безопасна экспрессия (преобразование информации в белок или РНК) нового гена, насколько безопасно попадание реконструированного гена в другие ткани, как долго будет функционировать модифицированная клетка, будут ли атакованы новые клетки иммунной системой организма хозяина.

Считается, что большие перспективы есть у лечения таким способом онкологических заболеваний, тяжелых иммунодефицитов, сахарного диабета и других серьезных недугов.

Однако особенностью генной терапии является экспериментальный подход. Это означает, что до конца не изученными являются последствия, которые влекут за собой манипуляции с генетическим материалом, отмечают юристы.

В последние два года большие надежды ученые возлагают на так называемый метод генного редактирования CRISPR/Cas9, который должен, как считается, значительно упростить встраивание нужного гена в ДНК любого организма или его удаление оттуда. Пока специалисты сомневаются, так ли безупречен метод: выяснилось, что его использование может привести к повреждению ДНК, а не исправить дефект, пишет британская Guardian.

В целом, по мнению исследователей, важно четко различать две разные цели генной терапии: коррекцию генетических дефектов в клетках уже родившегося человека и коррекцию в клетках зародыша или на самых ранних стадиях развития зиготы (клетки, образующейся в результате оплодотворения). До сих пор первая цель практически не вызывала сомнений, тогда как второй вариант большинство исследователей либо отвергают, либо относятся к нему весьма скептически.

можно ли поменять генетический код. 90mic. можно ли поменять генетический код фото. можно ли поменять генетический код-90mic. картинка можно ли поменять генетический код. картинка 90mic. Что нужно знать родителям о «хороших» и «плохих» генах, наследственных болезнях и что мамы и папы могут сделать для здоровья будущего ребенка.Фото: totojang1977 / Shutterstock.com

Но ни предлагаемая модификация генома космонавта, ни китайский проект не имеют отношения к генной терапии, так как в этих случаях речь идет об изменении генома здорового и даже не предрасположенного к какому-то заболеванию человека или эмбриона.

В чем вопрос?

Большая часть замечаний к проектам изменения генома человека содержит одну основную мысль: любая модификация человеческого генома должна иметь серьезные обоснования и использоваться в том случае, когда другие способы неэффективны.

Вмешательство в геном человека, направленное на его модификацию, может быть осуществлено только в профилактических, терапевтических или диагностических целях и только при условии, что подобное вмешательство не направлено на изменение генома наследников данного человека,

— гласит международная Конвенция о правах человека и биомедицине, принятая Комитетом министров Совета Европы в 1996 году. Россия пока не присоединилась к этому документу.

Общественные организации, например, известная американская ETC и сотни тысяч ее единомышленников во всем мире считают, что такие модификации не должны быть уделом бизнес-компаний, и на них не должно распространяться патентное право.

Активисты также уверены, что если геном человека подвергается изменению, это должно происходить в рамках жесткого законодательного регулирования.

На этой неделе стало известно, что Всемирная организация здравоохранения (ВОЗ) наконец создает рабочую группу «по изучению генного редактирования и комплексных этических, социальных проблем и проблем безопасности, которые возникают в связи с ним». Панель экспертов предложит нормы и стандарты регулирования генного редактирования, сообщили журналистам CNN представители ВОЗ. Это заявление организация сделала через неделю после появления информации о возможном рождении трансгенных младенцев в Китае. А в Международном комитете по биоэтике ЮНЕСКО считают, что эксперименты с изменением генов человеческих зародышей должны быть запрещены до тех пор, пока не будет доказана их безопасность. Информация об этом была размещена на сайте организации также после заявления китайского ученого.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *