передача информации выбор кода
Передача информации выбор кода
Для кодирования некоторой последовательности, состоящей из букв К, Л, М, Н, решили использовать неравномерный двоичный код, удовлетворяющий условию Фано. Для буквы Н использовали кодовое слово 0, для буквы К — кодовое слово 10. Какова наименьшая возможная суммарная длина всех четырёх кодовых слов?
Условие Фано означает, что никакое кодовое слово не является началом другого кодового слова. Это обеспечивает возможность однозначной расшифровки закодированных сообщений.
Найдём наиболее короткие представления для всех букв. Кодовые слова 01 и 00 использовать нельзя, поскольку тогда нарушается условие Фано. Используем, например, для буквы Л кодовое слово 11. Тогда для четвёртой буквы нельзя подобрать кодовое слово, не нарушая условие Фано. Следовательно, для оставшихся двух букв нужно использовать трёхзначные кодовые слова. Закодируем буквы Л и М кодовыми словами 110 и 111. Тогда суммарная длина всех четырёх кодовых слов равна
Для кодирования некоторой последовательности, состоящей из букв А, Б, В, Г и Д, используется неравномерный двоичный код, позволяющий однозначно декодировать полученную двоичную последовательность. Вот этот код: А — 1; Б — 0100; В — 000; Г — 011; Д — 0101. Требуется сократить для одной из букв длину кодового слова так, чтобы код по-прежнему можно было декодировать однозначно. Коды остальных букв меняться не должны. Каким из указанных способов это можно сделать?
Для однозначного декодирования получившееся в результате сокращения кодовое слово не должно быть началом никакого другого. Первый вариант ответа не подходит, поскольку код буквы А является началом кода буквы Г. Второй вариант ответа подходит. Третий вариант ответа не подходит, т. к. в таком случае код буквы Г является началом кода буквы Д.
Правильный ответ указан под номером: 2.
Для кодирования некоторой последовательности, состоящей из букв И, К, Л, М, Н, решили использовать неравномерный двоичный код, удовлетворяющий условию Фано. Для буквы Н использовали кодовое слово 0, для буквы К – кодовое слово 10. Какова наименьшая возможная суммарная длина всех пяти кодовых слов?
Примечание. Условие Фано означает, что никакое кодовое слово не является началом другого кодового слова. Это обеспечивает возможность однозначной расшифровки закодированных сообщений.
Нельзя использовать кодовые слова, которые начинаются с 0 или с 10. 11 также не можем использовать, поскольку тогда мы больше не сможем взять никакое другое кодовое слово, а нам их нужно пять. Поэтому берём трёхзначное 110. 111 опять же не можем использовать, потому что понадобиться ещё одно кодовое слово, а вместе с этим не останется больше свободных. Теперь осталось взять всего два слова и это будут 1110 и 1111. Итого имеем 0, 10, 110, 1110 и 1111 — 14 символов.
Для кодирования некоторой последовательности, состоящей из букв И, К, Л, М, Н, решили использовать неравномерный двоичный код, удовлетворяющий условию Фано. Для буквы Л использовали кодовое слово 1, для буквы М – кодовое слово 01. Какова наименьшая возможная суммарная длина всех пяти кодовых слов?
Примечание. Условие Фано означает, что никакое кодовое слово не является началом другого кодового слова. Это обеспечивает возможность однозначной расшифровки закодированных сообщений.
Условие Фано — никакое кодовое слово не может быть началом другого кодового слова. Так как уже имеется кодовое слово 1, то никакое другое не может начинаться с 1. Только с 0. Также не может начинаться с 01, поскольку у нас уже есть 01. То есть любое новое кодовое слово будет начинаться с 00. Но это не может быть 00, так как иначе мы не сможем взять больше ни одного кодового слова, поскольку все более длинные слова начинаются либо с 1, либо с 00, либо с 01. Мы можем взять либо 000, либо 001. Но не оба сразу, поскольку опять же в таком случае мы больше не сможем взять ни одного нового кода. Тогда возьмём 001. И так как нам осталось всего два кода, то можем взять 0000 и 0001. Итого имеем: 1, 01, 001, 0000, 0001. Всего 14 символов.
Передача информации выбор кода
Для кодирования некоторой последовательности, состоящей из букв К, Л, М, Н, решили использовать неравномерный двоичный код, удовлетворяющий условию Фано. Для буквы Н использовали кодовое слово 0, для буквы К — кодовое слово 10. Какова наименьшая возможная суммарная длина всех четырёх кодовых слов?
Условие Фано означает, что никакое кодовое слово не является началом другого кодового слова. Это обеспечивает возможность однозначной расшифровки закодированных сообщений.
Найдём наиболее короткие представления для всех букв. Кодовые слова 01 и 00 использовать нельзя, поскольку тогда нарушается условие Фано. Используем, например, для буквы Л кодовое слово 11. Тогда для четвёртой буквы нельзя подобрать кодовое слово, не нарушая условие Фано. Следовательно, для оставшихся двух букв нужно использовать трёхзначные кодовые слова. Закодируем буквы Л и М кодовыми словами 110 и 111. Тогда суммарная длина всех четырёх кодовых слов равна
Для кодирования некоторой последовательности, состоящей из букв А, Б, В, Г и Д, используется неравномерный двоичный код, позволяющий однозначно декодировать полученную двоичную последовательность. Вот этот код: А — 1; Б — 0100; В — 000; Г — 011; Д — 0101. Требуется сократить для одной из букв длину кодового слова так, чтобы код по-прежнему можно было декодировать однозначно. Коды остальных букв меняться не должны. Каким из указанных способов это можно сделать?
Для однозначного декодирования получившееся в результате сокращения кодовое слово не должно быть началом никакого другого. Первый вариант ответа не подходит, поскольку код буквы А является началом кода буквы Г. Второй вариант ответа подходит. Третий вариант ответа не подходит, т. к. в таком случае код буквы Г является началом кода буквы Д.
Правильный ответ указан под номером: 2.
Для кодирования некоторой последовательности, состоящей из букв И, К, Л, М, Н, решили использовать неравномерный двоичный код, удовлетворяющий условию Фано. Для буквы Н использовали кодовое слово 0, для буквы К – кодовое слово 10. Какова наименьшая возможная суммарная длина всех пяти кодовых слов?
Примечание. Условие Фано означает, что никакое кодовое слово не является началом другого кодового слова. Это обеспечивает возможность однозначной расшифровки закодированных сообщений.
Нельзя использовать кодовые слова, которые начинаются с 0 или с 10. 11 также не можем использовать, поскольку тогда мы больше не сможем взять никакое другое кодовое слово, а нам их нужно пять. Поэтому берём трёхзначное 110. 111 опять же не можем использовать, потому что понадобиться ещё одно кодовое слово, а вместе с этим не останется больше свободных. Теперь осталось взять всего два слова и это будут 1110 и 1111. Итого имеем 0, 10, 110, 1110 и 1111 — 14 символов.
Для кодирования некоторой последовательности, состоящей из букв И, К, Л, М, Н, решили использовать неравномерный двоичный код, удовлетворяющий условию Фано. Для буквы Л использовали кодовое слово 1, для буквы М – кодовое слово 01. Какова наименьшая возможная суммарная длина всех пяти кодовых слов?
Примечание. Условие Фано означает, что никакое кодовое слово не является началом другого кодового слова. Это обеспечивает возможность однозначной расшифровки закодированных сообщений.
Условие Фано — никакое кодовое слово не может быть началом другого кодового слова. Так как уже имеется кодовое слово 1, то никакое другое не может начинаться с 1. Только с 0. Также не может начинаться с 01, поскольку у нас уже есть 01. То есть любое новое кодовое слово будет начинаться с 00. Но это не может быть 00, так как иначе мы не сможем взять больше ни одного кодового слова, поскольку все более длинные слова начинаются либо с 1, либо с 00, либо с 01. Мы можем взять либо 000, либо 001. Но не оба сразу, поскольку опять же в таком случае мы больше не сможем взять ни одного нового кода. Тогда возьмём 001. И так как нам осталось всего два кода, то можем взять 0000 и 0001. Итого имеем: 1, 01, 001, 0000, 0001. Всего 14 символов.
Передача информации выбор кода
По каналу связи передаются сообщения, содержащие только буквы А, Б, В, Г, Д, Е. Для передачи используется неравномерный двоичный код, удовлетворяющий условию Фано; для букв A, Б, В используются такие кодовые слова: А — 0, Б — 101, В — 110.
Какова наименьшая возможная суммарная длина всех кодовых слов? Примечание. Условие Фано означает, что ни одно кодовое слово не является началом другого кодового слова. Коды, удовлетворяющие условию Фано, допускают однозначное декодирование.
Рассмотрели все коды с длинами от 1 до 3, поэтому теперь достаточно взять любые два подходящие кода длины 4. Например, 1000 и 1001.
В сумме длина кодов 1 + 3 + 3 + 3 + 4 + 4 = 18.
По каналу связи передаются сообщения, содержащие только буквы А, Б, В, Г, Д, Е. Для передачи используется неравномерный двоичный код, удовлетворяющий условию Фано; для букв A, Б, В используются такие кодовые слова: А — 1, Б – 010, В – 001.
Какова наименьшая возможная суммарная длина всех кодовых слов? Примечание. Условие Фано означает, что ни одно кодовое слово не является началом другого кодового слова. Коды, удовлетворяющие условию Фано, допускают однозначное декодирование.
Рассмотрели все коды с длинами от 1 до 3, поэтому теперь достаточно взять любые два подходящие кода длины 4. Например, 0111 и 0110.
В сумме длина кодов 1 + 3 + 3 + 3 + 4 + 4 = 18.
По каналу связи передаются сообщения, содержащие только шесть букв: А, B, C, D, E, F. Для передачи используется неравномерный двоичный код, удовлетворяющий условию Фано. Для букв A, B, C используются такие кодовые слова: А – 11, B – 101, C – 0. Какова наименьшая возможная суммарная длина всех кодовых слов?
Примечание. Условие Фано означает, что ни одно кодовое слово не является началом другого кодового слова. Коды, удовлетворяющие условию Фано, допускают однозначное декодирование.
Заметим, что для алфавита из трёх букв, код с наименьшей суммарной длиной кодовых слов, удовлетворяющий условию Фано имел бы длину 1 + 2 + 2 = 5. Для алфавита из четырёх букв: 1 + 2 + 3 + 3 = 9. Аналогично можно получить минимальную длину суммарную длину кодовых слов для алфавита, содержащего произвольное число символов.
Удостоверимся, что, используя кодовые слова, приведённые в условии можно построить код, удовлетворяющий условию Фано и имеющий наименьшую суммарную длину. Будем использовать для буквы D кодовое слово 1000, для буквы E кодовое слово 10010, для буквы F 10011.
Суммарная длина такого кода 1 + 2 + 3 + 4 + 5 + 5 = 20.
Передача информации выбор кода
Для кодирования некоторой последовательности, состоящей из букв А, Б, В и Г, решили использовать неравномерный двоичный код, позволяющий однозначно декодировать двоичную последовательность, появляющуюся на приёмной стороне канала связи. Для букв А, Б, В используются такие кодовые слова: А — 000, Б — 1, В — 011.
Укажите кратчайшее кодовое слово для буквы Г, при котором код будет допускать однозначное декодирование. Если таких кодов несколько, укажите код с наименьшим числовым значением.
Код не может начинаться с 1, так как Б − 1.
0 не подойдёт, так как А и В начинаются с 0.
Двоичные коды 00 или 01 не подходят, поскольку А и В — 000 и 011.
010 и 001 подойдут, так как не конфликтуют ни с каким другим уже имеющимся кодом, из них 001 меньше.
По каналу связи передаются сообщения, содержащие только восемь букв: А, В, Е, З, И, Н, О, Р. Для передачи используется двоичный код, удовлетворяющий условию Фано. Кодовые слова для некоторых букв известны: А — 101, В — 010, И — 00. Какое наименьшее количество двоичных знаков потребуется для кодирования слова НЕВЕЗЕНИЕ?
Примечание. Условие Фано означает, что ни одно кодовое слово не является началом другого кодового слова.
Буква Е повторяется в слове НЕВЕЗЕНИЕ чаще всего, поэтому закодируем её кодовым словом 11. Буква Н повторяется в слове НЕВЕЗЕНИЕ 2 раза, поэтому закодируем её кодовым словом 100. Букву З закодировать кодовым словом длины 3 нельзя, поскольку не останется кодовых слов для оставшихся букв, которые удовлетворяли бы условию Фано. Поэтому букву З закодируем кодовым словом 0110. Тогда количество двоичных знаков, которые потребуются для кодирования слова НЕВЕЗЕНИЕ равно 4 · 1 + 2 · 5 + 3 · 3 = 23.
Ответ в данной задаче — 23. Тем, у кого получается другой ответ, рекомендуем сделать следующее:
1. Построить дерево возможных кодовых слов (в дальнейшем — кодов), длина которых не превышает 4.
2. Отметить на данном дереве заданные коды для букв А, В, И.
3. Вычеркнуть запрещенные коды, то есть коды, расположенные на ветках дерева, исходящих из отмеченных кодов, а также на ветках, соединяющих отмеченные коды с вершиной дерева.
4. Последовательно отмечать на дереве выбранный код для очередной буквы и вычеркивать коды, которые оказываются запрещенными после выбора данного кода.
После кодирования всех букв, входящих в слово НЕВЕЗЕНИЕ, в дереве кодов должен остаться хотя бы один свободный (не отмеченный и не запрещенный) код. Он необходим, чтобы на его основе построить коды для букв О и Р, которые хотя и не входят в слово НЕВЕЗЕНИЕ, но тоже могут передаваться по каналу связи и, следовательно, должны иметь свои коды. Если такого свободного кода не осталось, то решение является неверным, и необходимо выбрать другой код для последней кодируемой буквы.
Покажем, как могло бы выглядеть решение в этом случае.
Строим дерево кодовых слов, отмечаем коды заданных букв (выделено красным) и вычеркиваем запрещенные коды (выделено серым).
Выбираем для буквы, чаще всего встречающейся в слове (это буква Е, встречается 4 раза) свободный код с наименьшей длиной, отмечаем его (выделено синим) и вычеркиваем запрещенные коды (выделено серым).
Выбираем для следующей буквы, чаще встречающейся в заданном слове (это буква Н, встречается 2 раза) свободный код с наименьшей длиной (выделено синим) и вычеркиваем запрещенные коды (выделено серым).
Пытаемся выбрать код для следующей буквы (это буква З), отмечаем его и вычеркиваем запрещенные коды. В получившемся дереве не осталось ни одного свободного кода, следовательно, наш выбор неправильный.
Тогда для буквы З придется использовать код большей длины.
Если сосчитать суммарную длины кодовых слов все букв, входящих в слово НЕВЕЗЕНИЕ, то получим 23.
Передача информации выбор кода
Для передачи сообщений, составленных из заглавных букв русского алфавита, используется неравномерный двоичный код, в котором никакое кодовое слово не является началом другого кодового слова. Это условие обеспечивает возможность однозначной расшифровки закодированных сообщений. Известны кодовые слова, назначенные для некоторых букв: Б — 01, В — 001, Е — 0001, Ш — 111. Какое наименьшее количество двоичных знаков может содержать сообщение, кодирующее слово КУКУШКА?
Буква К повторяется в слове КУКУШКА три раза, поэтому закодируем её кодовым словом 10. Буква У повторяется в слове КУКУШКА два раза, поэтому закодируем её кодовым словом 110. Букву А закодировать кодовым словом длины 4 нельзя, поскольку не останется кодовых слов для остальных букв, поэтому закодируем букву А кодовым словом 00000. Таким образом, сообщение, кодирующее слово КУКУШКА будет содержать 2 · 3 + 3 · 3 + 5 = 20 двоичных знаков.
Для передачи по каналу связи сообщения, состоящего только из символов А, Б, В и Г, используется неравномерный (по длине) код: А-10, Б-11, В-110, Г-0. Через канал связи передаётся сообщение: ВАГБААГВ. Закодируйте сообщение данным кодом. Полученное двоичное число переведите в восьмеричный вид.
Закодируем последовательность букв: ВАГБААГВ — 1101001110100110. Теперь разобьём это представление на тройки справа налево и переведём полученный набор чисел сначала в десятичный код, затем в восьмеричный (в данном случае они совпадают):
1 101 001 110 100 110 для самой левой цифры 1 допишем два нуля слева, тогда получим
001 101 001 110 100 110— 1 5 1 6 4 6.
По каналу связи передаются сообщения, содержащие только пять букв: A, B, С, D, E. Для передачи используется двоичный код, допускающий однозначное декодирование. Для букв A, B, C используются такие кодовые слова:
A – 1, B – 010, C – 000.
Укажите кратчайшее кодовое слово для буквы E, при котором код будет допускать однозначное декодирование. Если таких кодов несколько, укажите код с наименьшим числовым значением.
Буква E не может кодироваться как 0, так как кодирование буквы B начинается с 0.
Буква E не может кодироваться как 1, так как это кодирование буквы А.
Буква E не может кодироваться как 10 и 11 − так как кодирование буквы А — 1.
Буква E не может кодироваться как 01 и 00 — так как кодирование буквы B начинается с 01, а кодирование буквы C с 00. Буква E может кодироваться как 001 — это наименьшее возможное значение.
По каналу связи передаются сообщения, содержащие только четыре буквы: А, Б, В, Г; для передачи используется двоичный код, удовлетворяющий условию Фано. Для букв А, Б, В используются такие кодовые слова: А — 0;
Укажите кратчайшее кодовое слово для буквы Г, при котором код будет допускать однозначное декодирование. Если таких кодов несколько, укажите код с наименьшим числовым значением.
Примечание. Условие Фано означает, что никакое кодовое слово не является началом другого кодового слова. Это обеспечивает возможность однозначной расшифровки закодированных сообщений.
Для того, чтобы сообщение, записанное с помощью неравномерного по длине кода, однозначно раскодировалось, требуется, чтобы никакой код не был началом другого (более длинного) кода.
Рассмотрим варианты для буквы Г, начиная с самого короткого.
1) Г=1: код буквы Г является началом кода буквы Б — 110, поэтому этот вариант не подходит.
2) Если код Г=01, то условие Фано нарушается, поскольку тогда код буквы А является началом кода буквы Г.
3) Если код Г=101, то условие Фано не нарушается. Данное кодовое слово является кратчайшим для буквы Г.
По каналу связи передаются сообщения, содержащие только шесть букв: А, B, C, D, E, F. Для передачи используется неравномерный двоичный код, удовлетворяющий условию Фано. Для букв A, B, C используются такие кодовые слова: А – 00, B – 010, C – 1. Какова наименьшая возможная суммарная длина всех кодовых слов?
Примечание. Условие Фано означает, что ни одно кодовое слово не является началом другого кодового слова. Коды, удовлетворяющие условию Фано, допускают однозначное декодирование.
Для нахождения кодовых слов будем использовать двоичное дерево, в котором от каждого узла отходит две ветви, соответствующие выбору следующей цифры кода. Буквы будем размещать на конечных узлах дерева — листьях. Условие Фано выполняется, поскольку при проходе от корня дерева к букве в середине пути не встречается других букв.
Пример дерева, обеспечивающего минимальную сумму длин всех шести кодов изображено на рисунке.
Суммарная длина такого кода 1 + 2 + 3 + 4 + 5 + 5 = 20.
Для кодирования некоторой последовательности, состоящей из букв А, Б, В, Г, Д, Е, решили использовать неравномерный двоичный код, удовлетворяющий условию Фано. Для букв А, Б, В, Г использовали соответственно кодовые слова 000, 001, 10, 11. Укажите кратчайшее возможное кодовое слово для буквы Д, при котором код будет допускать однозначное декодирование. Если таких кодов несколько, укажите код с наименьшим числовым значением. Примечание. Условие Фано означает, что никакое кодовое слово не является началом другого кодового слова. Это обеспечивает возможность однозначной расшифровки закодированных сообщений.
Однозначные коды не подходят по условию Фано. Кратчайшее подходящее кодовое слово — 01. Но выбирая его, не останется вариантов закодировать букву E, значит, нужно взять минимум трехзначный код. Минимальный из них, подходящий по условию Фано — 010. Тогда букву Е можно закодировать как 011.
По каналу связи передаются сообщения, содержащие только шесть букв: А, B, C, D, E, F. Для передачи используется неравномерный двоичный код, удовлетворяющий условию Фано. Для букв A, B, C используются такие кодовые слова: А — 11, B — 101, C — 0. Укажите кодовое слово наименьшей возможной длины, которое можно использовать для буквы F. Если таких слов несколько, укажите то из них, которое соответствует наименьшему возможному двоичному числу. Примечание. Условие Фано означает, что ни одно кодовое слово не является началом другого кодового слова. Коды, удовлетворяющие условию Фано, допускают однозначное декодирование
Поскольку все однозначные и двузначные слова не подходят по условию Фано, значит, нужно найти трехзначное слово, которое было бы минимально и удовлетворяло условию. Это слово — 100. Однако при выборе кода 100 мы закрываем возможные варианты для D И E. Значит, трехзначные слова нам тоже не подходят, если взять четырехзначные то там мы для кодирования можем взять слово 1000. Тогда для кодирования D и E можно использовать слова 10010 и 10011.
По каналу связи передаются сообщения, содержащие только четыре буквы: Р, Е, К, А; для передачи используется двоичный код, удовлетворяющий условию Фано. Для букв А, Р, Е используются такие кодовые слова: А: 111, Р: 0, Е: 100.
Укажите кратчайшее кодовое слово для буквы К. Если таких кодов несколько, укажите код с наименьшим числовым значением.
Примечание. Условие Фано означает, что ни одно кодовое слово не является началом другого кодового слова.
Перечислим возможные коды (не использующиеся для кодировки других букв) в порядке возрастания длины и числового значения.
0 — нельзя, это буква Р.
1 — нельзя, буквы Е и К начинаются с 1.
000 — нельзя из-за Р.
001 — нельзя из-за Р.
101 — можно использовать.
Таким образом, кратчайшее кодовое слово для буквы К — 101.
По каналу связи передаются сообщения, содержащие только четыре буквы: М, О, Р, Е; для передачи используется двоичный код, удовлетворяющий условию Фано. Для букв О, Р, Е используются такие кодовые слова: О: 111, Р: 0, Е: 100.
Укажите кратчайшее кодовое слово для буквы М. Если таких кодов несколько, укажите код с наибольшим числовым значением.
Примечание. Условие Фано означает, что ни одно кодовое слово не является началом другого кодового слова.
Перечислим возможные коды (не использующиеся для кодировки других букв) в порядке возрастания длины и числового значения.
0 — нельзя, Р начинаются с 0.
1 — нельзя, буквы Е и О начинаются с 1.
000 — нельзя из-за Р.
001 — нельзя из-за Р.
101 — можно использовать.
110 — можно использовать.
111 — нельзя из-за О.
Таким образом, наибольшее числовое значение у кодового слова 110 для буквы М.
Для передачи данных используется двоичный код. Сообщение содержит только буквы А, Б, В или Г, для букв А, Б и В используются следующие кодовые слова:
A – 0, Б – 101, В – 111.
Найдите кодовое слово минимальной длины для Г при котором сохраняется прямое условие Фано. Если таких кодовых слов несколько, укажите кодовое слово с минимальным двоичным значением.
Примечание. Условие Фано означает, что никакое кодовое слово не является началом другого кодового слова. Это обеспечивает возможность однозначной расшифровки закодированных сообщений.
Перечислим возможные коды (не использующиеся для кодировки других букв) в порядке возрастания длины и числового значения.
0 — нельзя из-за А, начинается с 0.
1 — нельзя, буквы Б, В начинаются с 1.
000 — нельзя из-за А.
001 — нельзя из-за А.
100 — можно использовать.
Таким образом, кратчайшее кодовое слово для буквы Г — 100.
По каналу связи передаются сообщения, содержащие только семь букв: А, Б, Г, И, М, Р, Я. Для передачи используется двоичный код, удовлетворяющий условию Фано. Кодовые слова для некоторых букв известны: А — 010, Б — 011, Г — 100. Какое наименьшее количество двоичных знаков потребуется для кодирования слова МАГИЯ?
Примечание. Условие Фано означает, что ни одно кодовое слово не является началом другого кодового слова.
Следующая буква должна кодироваться как 11, поскольку 10 мы взять не можем. 100 взять не можем из-за Г, значит, следующая буква должна быть закодирована кодом 101. Следующая буква должна кодироваться как 000, поскольку 00 взять не можем, иначе не останется кодовых слов для оставшейся буквы, которые удовлетворяют условию Фано. Значит, последняя буква будет кодироваться как 001. Тогда наименьшее количество двоичных знаков, которые потребуются для кодирования слова МАГИЯ равно 2 + 3 + 3 + 3 + 3 = 14.
Заметим, что после кодирования всех букв, входящих в слово МАГИЯ, должен остаться хотя бы один свободный код для кодирования буквы Р, которая не входит в данное слово, но может передаваться по каналу связи. Проверить наличие свободного кода можно, построив дерево кодов, как показано в задаче 18553.
При такой кодировке невозможно подобрать кодовое слово для буквы «Р», удовлетворяющее условию Фано.
По каналу связи передаются сообщения, содержащие только восемь букв: К, Л, М, Н, О, П, Р, С. Для передачи используется двоичный код, удовлетворяющий условию Фано. Кодовые слова для некоторых букв известны: К — 001, Н — 100, Р — 111. Какое наименьшее количество двоичных знаков потребуется для кодирования слова МОЛОКОСОС?
Примечание. Условие Фано означает, что ни одно кодовое слово не является началом другого кодового слова.
Буква О повторяется в слове МОЛОКОСОС чаще всего, поэтому закодируем её кодовым словом 01. Буква С повторяется в слове МОЛОКОСОС 2 раза, поэтому закодируем её кодовым словом 000. Букву М закодируем кодовым словом 101. Букву Л закодировать кодовым словом длины 3 нельзя, поскольку не останется кодовых слов для оставшихся букв, которые удовлетворяли бы условию Фано. Поэтому букву Л закодируем кодовым словом 1100. Тогда количество двоичных знаков, которые потребуются для кодирования слова МОЛОКОСОС равно 4 · 1 + 2 · 4 + 3 · 4 = 24.
Заметим, что после кодирования всех букв, входящих в слово МОЛОКОСОС, должен остаться хотя бы один свободный код для кодирования буквы П, которая не входит в данное слово, но может передаваться по каналу связи. Проверить наличие свободного кода можно, построив дерево кодов, как показано в задаче 18553.
По каналу связи передаются сообщения, содержащие только четыре буквы: А, Б, В, Г; для передачи используется двоичный код, удовлетворяющий условию Фано. Для букв Б, В, Г используются такие кодовые слова: Б — 101; В — 110; Г — 0.
Укажите кратчайшее кодовое слово для буквы А, при котором код будет допускать однозначное декодирование. Если таких кодов несколько, укажите код с наибольшим числовым значением.
Примечание. Условие Фано означает, что никакое кодовое слово не является началом другого кодового слова. Это обеспечивает возможность однозначной расшифровки закодированных сообщений.
Для трёх букв кодовые слова уже известны, осталось подобрать для оставшейся буквы такое кодовое слово, которое будет являться кратчайшим и удовлетворять условию Фано.
Кодовым словом не могут быть ни 0, ни 1, потому что есть кодовые слова, начинающиеся с 0 и 1. Для оставшейся буквы можно использовать кодовые слова 100 и 111. Кратчайшее слово с наибольшим числовым значением — 111.
По каналу связи передаются сообщения, содержащие только заглавные латинские буквы. Для передачи используется двоичный код, удовлетворяющий условию Фано. Кодовые слова для некоторых букв известны: A — 111, B — 000, С — 01, D — 1101, E — 100, F — 0010. Укажите кратчайшее возможное кодовое слово для буквы L. Если таких кодов несколько, укажите код с наименьшим числовым значением.
Примечание. Условие Фано означает, что никакое кодовое слово не является началом другого кодового слова. Это обеспечивает возможность однозначной расшифровки закодированных сообщений.
Для шести букв кодовые слова уже известны, осталось подобрать для буквы L такое кодовое слово, которое будет являться кратчайшим и удовлетворять условию Фано.
Кодовым словом не могут быть ни 0, ни 1, потому что есть кодовые слова, начинающиеся с 0 и 1. Для оставшейся буквы можно использовать кодовые слова 101, 0011 и 1100. Кратчайшее слово с наименьшим числовым значением — 101.
По каналу связи передаются сообщения, содержащие только заглавные латинские буквы. Для передачи используется двоичный код, удовлетворяющий условию Фано. Кодовые слова для некоторых букв известны: A — 101, B — 010, С — 00, D — 1001, E — 111, F — 0110. Укажите кратчайшее возможное кодовое слово для буквы N. Если таких кодов несколько, укажите код с наименьшим числовым значением.
Примечание. Условие Фано означает, что никакое кодовое слово не является началом другого кодового слова. Это обеспечивает возможность однозначной расшифровки закодированных сообщений.
Для шести букв кодовые слова уже известны, осталось подобрать для буквы L такое кодовое слово, которое будет являться кратчайшим и удовлетворять условию Фано.
Кодовым словом не могут быть ни 0, ни 1, потому что есть кодовые слова, начинающиеся с 0 и 1. Для оставшейся буквы можно использовать кодовые слова 110, 0111 и 1100. Кратчайшее слово с наименьшим числовым значением — 110.
Для передачи сообщений, составленных из заглавных букв русского алфавита, используется неравномерный двоичный код, в котором никакое кодовое слово не является началом другого кодового слова. Это условие обеспечивает возможность однозначной расшифровки закодированных сообщений. Известны кодовые слова, назначенные для некоторых букв: А — 000, Б — 0010, В — 101, Г — 11. Какое наименьшее количество двоичных знаков может содержать сообщение, кодирующее слово КОЛОБОК?
Буква О повторяется в слове КОЛОБОК три раза, поэтому закодируем её кодовым словом 01. Буква К повторяется в слове КОЛОБОК два раза, поэтому закодируем её кодовым словом 100. Букву Л закодировать кодовым словом длины 4 нельзя, поскольку не останется кодовых слов для остальных букв, поэтому закодируем букву Л кодовым словом 00110. Таким образом, сообщение, кодирующее слово КОЛОБОК будет содержать 2 · 3 + 3 · 2 + 5 + 4 = 21 двоичный знак.
Заметим, что после кодирования всех букв, входящих в слово КОЛОБОК, должен остаться хотя бы один свободный код для построения кодов остальных букв русского алфавита, которые не входит в данное слово, но могут передаваться по каналу связи. Проверить наличие свободного кода можно, построив дерево кодов, как показано в задаче 18553.