перевод двоичного кода в десятичный паскаль

Перевод чисел из одной системы счисления в другую

Данный конвертер переводит числа между наиболее популярными системами счисления: десятичной, двоичной, восьмеричной, шестнадцатеричной.

Существуют и другие системы счисления, но мы не стали включать их в конвертер из-за низкой популярности.

Для указания системы счисления при записи числа используется нижний индекс, который ставится после числа:
20010 = 110010002 = 3108 = C816

Кратко об основных системах счисления

Десятичная система счисления. Используется в повседневной жизни и является самой распространенной. Все числа, которые нас окружают представлены в этой системе. В каждом разряде такого числа может использоваться только одна цифра от 0 до 9.

Двоичная система счисления. Используется в вычислительной технике. Для записи числа используются цифры 0 и 1.

Восьмеричная система счисления. Также иногда применяется в цифровой технике. Для записи числа используются цифры от 0 до 7.

Перевод в десятичную систему счисления

Перевод из десятичной системы счисления в другие

Делим десятичное число на основание системы, в которую хотим перевести и записываем остатки от деления. Запишем полученные остатки в обратном порядке и получим искомое число.

Переведем число 37510 в восьмеричную систему:

Перевод из двоичной системы в восьмеричную

Так же как и в первом способе разбиваем число на группы. Но вместо преобразований в скобках просто заменим полученные группы (триады) на соответствующие цифры восьмеричной системы, используя таблицу триад:

Перевод из двоичной системы в шестнадцатеричную

Также как и в первом способе разбиваем число на группы по 4 цифры. Заменим полученные группы (тетрады) на соответствующие цифры шестнадцатеричной системы, используя таблицу тетрад:

Тетрада0000000100100011010001010110011110001001101010111100110111101111
Цифра0123456789ABCDEF

Перевод из восьмеричной системы в двоичную

Каждый разряд восьмеричного числа будем делить на 2 и записывать остатки в обратном порядке, формируя группы по 3 разряда двоичного числа. Если в группе получилось меньше 3 разрядов, тогда дополняем нулями. Записываем все группы по порядку, отбрасываем ведущие нули, если имеются, и получаем двоичное число.

Используем таблицу триад:

Каждую цифру исходного восьмеричного числа заменяется на соответствующие триады. Ведущие нули самой первой триады отбрасываются.

Перевод из шестнадцатеричной системы в двоичную

Аналогично переводу из восьмеричной в двоичную, только группы по 4 разряда.

Используем таблицу тетрад:

Цифра0123456789ABCDEF
Тетрада0000000100100011010001010110011110001001101010111100110111101111

Каждую цифру исходного числа заменяется на соответствующие тетрады. Ведущие нули самой первой тетрады отбрасываются.

Перевод из восьмеричной системы в шестнадцатеричную и наоборот

Такую конвертацию можно осуществить через промежуточное десятичное или двоичное число. То есть исходное число сначала перевести в десятичное (или двоичное), и затем полученный результат перевести в конечную систему счисления.

Источник

Как перевести число из двоичной системы в десятичную

В задачах по теме Системы счисления часто требуется перевести число из двоичной в десятичную систему счисления. Чтобы выполнить такое задание, нужно воспользоваться алгоритмом перевода числа из двоичной системы счисления в десятичную.

Алгоритм перевода из двоичной системы в десятичную

Онлайн калькулятор перевода чисел из одной системы счисления в любую другую

Перевести число 1111001102 из двоичной системы в десятичную.

Нумеруем разряды числа справа налево, начиная с нуля:

876543210
111100110

И вычисляем результат:

1111001102 = 1 ⋅ 2 8 + 1 ⋅ 2 7 + 1 ⋅ 2 6 + 1 ⋅ 2 5 + 1 ⋅ 2 2 + 1 ⋅ 2 1 = 256 + 128 + 64 + 32 + 4 + 2 = 48610

Перевести число 1010001112 из двоичной системы в десятичную.

Нумеруем разряды числа справа налево:

876543210
101000111

И вычисляем результат:

1010001112 = 1 ⋅ 2 8 + 1 ⋅ 2 6 + 1 ⋅ 2 2 + 1 ⋅ 2 1 + 1 ⋅ 2 0 = 256 + 64 + 4 + 2 + 1 = 32710

Если материал понравился Вам и оказался для Вас полезным, поделитесь им со своими друзьями!

перевод двоичного кода в десятичный паскаль. 9b7da66eb5bb0e80c82e88fd. перевод двоичного кода в десятичный паскаль фото. перевод двоичного кода в десятичный паскаль-9b7da66eb5bb0e80c82e88fd. картинка перевод двоичного кода в десятичный паскаль. картинка 9b7da66eb5bb0e80c82e88fd. Данный конвертер переводит числа между наиболее популярными системами счисления: десятичной, двоичной, восьмеричной, шестнадцатеричной.

О сайте

На нашем сайте вы найдете множество полезных калькуляторов, конвертеров, таблиц, а также справочных материалов по основным дисциплинам.

Самый простой способ сделать расчеты в сети — это использовать подходящие онлайн инструменты. Воспользуйтесь поиском, чтобы найти подходящий инструмент на нашем сайте.

calcsbox.com

На сайте используется технология LaTeX.
Поэтому для корректного отображения формул и выражений
пожалуйста дождитесь полной загрузки страницы.

© 2021 Все калькуляторы online

Копирование материалов запрещено

Источник

Перевод из двоичной системы счисления в десятичную

Перевести двоичное число в десятичное достаточно просто, для этого необходимо воспользоваться формулой. Важное замечание состоит в том, что для перевода целого и дробного двоичного числа используются разные, хоть и схожие, формулы.

Алгоритм перевода целого двоичного числа в десятичную систему счисления

Для перевода целого двоичного числа в десятичное, обратимся к развернутой форме записи числа для позиционной системы счисления:

где A — число, q — основание системы счисления, а n — количество разрядов числа.

Зная основание системы счисления (2), выведем формулу перевода:

Пример 1: Перевести число 1010 из двоичной системы в десятичную

Применив выведенную формулу, получим:

10102=1 ∙ 2 3 + 0 ∙ 2 2 + 1 ∙ 2 1 + 0 ∙ 2 0 = 1 ∙ 8 + 0 ∙ 4 + 1 ∙ 2 + 0 ∙ 1 = 8 + 0 + 2 + 0 = 1010

Алгоритм перевода двоичной дроби в десятичную систему счисления

Как и в предыдущем случае, для перевода двоичной дроби в десятичную систему, воспользуемся развернутой формой представления дробей в позиционных системах:

где A — число, q — основание системы счисления, n — количество целых разрядов, а m — количество дробных разрядов числа. Зная основание системы счисления (2), выведем формулу перевода:

Пример 2: Перевести число 0,1010 из двоичной системы в десятичную

Применив выведенную формулу, получим:

Пример 3: Перевести число 1010,1010 из двоичной системы в десятичную

Источник

Перевод из десятичной системы счисления в двоичную

Перед тем как перейти к алгоритму перевода, вспомним алфавит двоичной и десятичной системы счисления:

ОснованиеНазваниеАлфавит
2Двоичная0, 1
10Десятичная0, 1, 2, 3, 4, 5, 6, 7, 8, 9

Для перевода чисел из десятичной системы в двоичную, воспользуемся соответствующим алгоритмом. Важно заметить, что алгоритм перевода целых и дробных чисел будет отличаться.

Алгоритм перевода целых десятичных чисел в двоичную систему счисления

Пример 1 : перевести десятичное число 123 в двоичную систему счисления

Для наглядности произведем деление «столбиком». Решение будет выглядеть следующим образом:

перевод двоичного кода в десятичный паскаль. perevod 123 iz 10 v 2. перевод двоичного кода в десятичный паскаль фото. перевод двоичного кода в десятичный паскаль-perevod 123 iz 10 v 2. картинка перевод двоичного кода в десятичный паскаль. картинка perevod 123 iz 10 v 2. Данный конвертер переводит числа между наиболее популярными системами счисления: десятичной, двоичной, восьмеричной, шестнадцатеричной.

Исходя из вышеприведенного алгоритма, полученные остатки необходимо записать в обратном порядке.

Алгоритм перевода десятичной дроби в двоичную систему

Пример 2: перевести число 0,123 в двоичную систему.

Решение будет выглядеть следующим образом:

0.123 ∙ 2 = 0.246 (0)
0.246 ∙ 2 = 0.492 (0)
0.492 ∙ 2 = 0.984 (0)
0.984 ∙ 2 = 1.968 (1)
0.968 ∙ 2 = 1.936 (1)
0.936 ∙ 2 = 1.872 (1)
0.872 ∙ 2 = 1.744 (1)
0.744 ∙ 2 = 1.488 (1)
0.488 ∙ 2 = 0.976 (0)
0.976 ∙ 2 = 1.952 (1)
0.952 ∙ 2 = 1.904 (1)

В данном примере можно продолжить вычисления, но зачастую, такой точности будет достаточно.

Перевод дробного десятичного числа в двоичную систему

Для того чтобы перевести десятичное число, содержащее дробную часть, необходимо отдельно перевести целую часть и отдельно дробную.

Пример 3: перевести число 110,625 из десятичной системы в двоичную

Для решения примера потребуется отдельно перевести 110 и отдельно 0,625 из десятичной системы в двоичную, используя вышеизложенные алгоритмы. Таким образом переведя 110, получим:

перевод двоичного кода в десятичный паскаль. perevod 110 iz 10 v 2. перевод двоичного кода в десятичный паскаль фото. перевод двоичного кода в десятичный паскаль-perevod 110 iz 10 v 2. картинка перевод двоичного кода в десятичный паскаль. картинка perevod 110 iz 10 v 2. Данный конвертер переводит числа между наиболее популярными системами счисления: десятичной, двоичной, восьмеричной, шестнадцатеричной.

Перевод десятичной дроби 0,625 выглядит так:

0.625 ∙ 2 = 1.25 (1)
0.25 ∙ 2 = 0.5 (0)
0.5 ∙ 2 = 1 (1)

Теперь осталось соединить результаты перевода. Таким образом: 110.62510=1101110.1012

Обратите внимание, что данный пример наглядно демонстрирует ситуацию, при которой дробная часть стала равной 0 и дальнейшее вычисление закончилось.

Источник

Системы счисления. Перевод из одной системы в другую.

1. Порядковый счет в различных системах счисления.

В современной жизни мы используем позиционные системы счисления, то есть системы, в которых число, обозначаемое цифрой, зависит от положения цифры в записи числа. Поэтому в дальнейшем мы будем говорить только о них, опуская термин «позиционные».

Для того чтобы научиться переводить числа из одной системы в другую, поймем, как происходит последовательная запись чисел на примере десятичной системы.

Поскольку у нас десятичная система счисления, мы имеем 10 символов (цифр) для построения чисел. Начинаем порядковый счет: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9. Цифры закончились. Мы увеличиваем разрядность числа и обнуляем младший разряд: 10. Затем опять увеличиваем младший разряд, пока не закончатся все цифры: 11, 12, 13, 14, 15, 16, 17, 18, 19. Увеличиваем старший разряд на 1 и обнуляем младший: 20. Когда мы используем все цифры для обоих разрядов (получим число 99), опять увеличиваем разрядность числа и обнуляем имеющиеся разряды: 100. И так далее.

Попробуем сделать то же самое в 2-ной, 3-ной и 5-ной системах (введем обозначение для 2-ной системы, для 3-ной и т.д.):

0000
1111
21022
311103
4100114
51011210
61102011
71112112
810002213
9100110014
10101010120
11101110221
12110011022
13110111123
14111011224
15111112030

Если система счисления имеет основание больше 10, то нам придется вводить дополнительные символы, принято вводить буквы латинского алфавита. Например, для 12-ричной системы кроме десяти цифр нам понадобятся две буквы ( и ):

00
11
22
33
44
55
66
77
88
99
10
11
1210
1311
1412
1513

2.Перевод из десятичной системы счисления в любую другую.

Чтобы перевести целое положительное десятичное число в систему счисления с другим основанием, нужно это число разделить на основание. Полученное частное снова разделить на основание, и дальше до тех пор, пока частное не окажется меньше основания. В результате записать в одну строку последнее частное и все остатки, начиная с последнего.

Пример 1. Переведем десятичное число 46 в двоичную систему счисления.

перевод двоичного кода в десятичный паскаль. perevod1. перевод двоичного кода в десятичный паскаль фото. перевод двоичного кода в десятичный паскаль-perevod1. картинка перевод двоичного кода в десятичный паскаль. картинка perevod1. Данный конвертер переводит числа между наиболее популярными системами счисления: десятичной, двоичной, восьмеричной, шестнадцатеричной.

Пример 2. Переведем десятичное число 672 в восьмеричную систему счисления.

перевод двоичного кода в десятичный паскаль. perevod2. перевод двоичного кода в десятичный паскаль фото. перевод двоичного кода в десятичный паскаль-perevod2. картинка перевод двоичного кода в десятичный паскаль. картинка perevod2. Данный конвертер переводит числа между наиболее популярными системами счисления: десятичной, двоичной, восьмеричной, шестнадцатеричной.

Пример 3. Переведем десятичное число 934 в шестнадцатеричную систему счисления.

перевод двоичного кода в десятичный паскаль. perevod3. перевод двоичного кода в десятичный паскаль фото. перевод двоичного кода в десятичный паскаль-perevod3. картинка перевод двоичного кода в десятичный паскаль. картинка perevod3. Данный конвертер переводит числа между наиболее популярными системами счисления: десятичной, двоичной, восьмеричной, шестнадцатеричной.

3. Перевод из любой системы счисления в десятичную.

Для того, чтобы научиться переводить числа из любой другой системы в десятичную, проанализируем привычную нам запись десятичного числа.
Например, десятичное число 325 – это 5 единиц, 2 десятка и 3 сотни, т.е.

Точно так же обстоит дело и в других системах счисления, только умножать будем не на 10, 100 и пр., а на степени основания системы счисления. Для примера возьмем число 1201 в троичной системе счисления. Пронумеруем разряды справа налево начиная с нуля и представим наше число как сумму произведений цифры на тройку в степени разряда числа:

Это и есть десятичная запись нашего числа, т.е.

Пример 4. Переведем в десятичную систему счисления восьмеричное число 511.

Пример 5. Переведем в десятичную систему счисления шестнадцатеричное число 1151.

4. Перевод из двоичной системы в систему с основанием «степень двойки» (4, 8, 16 и т.д.).

Для преобразования двоичного числа в число с основанием «степень двойки» необходимо двоичную последовательность разбить на группы по количеству цифр равному степени справа налево и каждую группу заменить соответствующей цифрой новой системы счисления.

Например, Переведем двоичное 1100001111010110 число в восьмеричную систему. Для этого разобьем его на группы по 3 символа начиная справа (т.к. ), а затем воспользуемся таблицей соответствия и заменим каждую группу на новую цифру:

Таблицу соответствия мы научились строить в п.1.

00
11
102
113
1004
1015
1106
1117

Пример 6. Переведем двоичное 1100001111010110 число в шестнадцатеричную систему.

00
11
102
113
1004
1015
1106
1117
10008
10019
1010A
1011B
1100C
1101D
1110E
1111F

5.Перевод из системы с основанием «степень двойки» (4, 8, 16 и т.д.) в двоичную.

Этот перевод аналогичен предыдущему, выполненному в обратную сторону: каждую цифру мы заменяем группой цифр в двоичной системе из таблицы соответствия.

Пример 7. Переведем шестнадцатеричное число С3A6 в двоичную систему счисления.

Для этого каждую цифру числа заменим группой из 4 цифр (т.к. ) из таблицы соответствия, дополнив при необходимости группу нулями вначале:

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *