перевод двоичного кода в восьмеричный
Как перевести число из двоичной системы в восьмеричную и шестнадцатеричную
Перевод чисел из двоичной системы счисления в восьмеричную, шестнадцатеричную или четвертичную и наоборот часто требуется для решения задач по теме Системы счисления. Чтобы перевести число из одной системы в другую, нужно использовать таблицу перевода чисел.
Таблица перевода чисел
Десятичная СС | Двоичная СС | Четвертичная СС | Восьмеричная СС | Шестнадцатеричная СС |
---|---|---|---|---|
1 | 1 | 1 | 1 | 1 |
2 | 10 | 2 | 2 | 2 |
3 | 11 | 3 | 3 | 3 |
4 | 100 | 10 | 4 | 4 |
5 | 101 | 11 | 5 | 5 |
6 | 110 | 12 | 6 | 6 |
7 | 111 | 13 | 7 | 7 |
8 | 1000 | 20 | 10 | 8 |
9 | 1001 | 21 | 11 | 9 |
10 | 1010 | 22 | 12 | A |
11 | 1011 | 23 | 13 | B |
12 | 1100 | 30 | 14 | C |
13 | 1101 | 31 | 15 | D |
14 | 1110 | 32 | 16 | E |
15 | 1111 | 33 | 17 | F |
16 | 10000 | 100 | 20 | 10 |
Как перевести число из двоичной системы счисления
Чтобы перевести число из двоичной системы счисления в четвертичную, восьмеричную или шестнадцатеричную систему, нужно воспользоваться алгоритмом перевода:
Как перевести число в двоичную систему счисления
Чтобы перевести число из четвертичной, восьмеричной или шестнадцатеричной системы счисления в двоичную, нужно воспользоваться алгоритмом перевода:
Перевод чисел в двоичную, шестнадцатеричную, десятичную, восьмеричную системы счисления
Способы представления чисел
Алгоритм перевода чисел из одной системы счисления в другую
Для перевода числа из двоичной системы счисления в восьмиричную (шестнадцатиричную) необходимо от запятой вправо и влево разбить двоичное число на группы по три (четыре – для шестнадцатиричной) разряда, дополняя при необходимости нулями крайние группы. Каждую группу заменяют соответствующей восьмиричной или шестнадцатиричной цифрой.
Таблица для перевода в восьмеричную систему счисления
Двоичная СС | Восьмеричная СС |
000 | 0 |
001 | 1 |
010 | 2 |
011 | 3 |
100 | 4 |
101 | 5 |
110 | 6 |
111 | 7 |
Остаток от деления записываем в обратном порядке. Получаем число в 8-ой системе счисления: 144
100 = 1448
Для перевода дробной части числа последовательно умножаем дробную часть на основание 8. В результате каждый раз записываем целую часть произведения.
0.12*8 = 0.96 (целая часть 0 )
0.96*8 = 7.68 (целая часть 7 )
0.68*8 = 5.44 (целая часть 5 )
0.44*8 = 3.52 (целая часть 3 )
Получаем число в 8-ой системе счисления: 0753.
0.12 = 0.7538
2 Этап. Перевод числа из десятичной системы счисления в восьмеричную систему счисления.
Обратный перевод из восьмеричной системы счислений в десятичную.
Для перевода целой части необходимо умножить разряд числа на соответствующую ему степень разряда.
144 = 8 2 *1 + 8 1 *4 + 8 0 *4 = 64 + 32 + 4 = 100
Перевод чисел из одной системы счисления в другую
Данный конвертер переводит числа между наиболее популярными системами счисления: десятичной, двоичной, восьмеричной, шестнадцатеричной.
Существуют и другие системы счисления, но мы не стали включать их в конвертер из-за низкой популярности.
Для указания системы счисления при записи числа используется нижний индекс, который ставится после числа:
20010 = 110010002 = 3108 = C816
Кратко об основных системах счисления
Десятичная система счисления. Используется в повседневной жизни и является самой распространенной. Все числа, которые нас окружают представлены в этой системе. В каждом разряде такого числа может использоваться только одна цифра от 0 до 9.
Двоичная система счисления. Используется в вычислительной технике. Для записи числа используются цифры 0 и 1.
Восьмеричная система счисления. Также иногда применяется в цифровой технике. Для записи числа используются цифры от 0 до 7.
Перевод в десятичную систему счисления
Перевод из десятичной системы счисления в другие
Делим десятичное число на основание системы, в которую хотим перевести и записываем остатки от деления. Запишем полученные остатки в обратном порядке и получим искомое число.
Переведем число 37510 в восьмеричную систему:
Перевод из двоичной системы в восьмеричную
Так же как и в первом способе разбиваем число на группы. Но вместо преобразований в скобках просто заменим полученные группы (триады) на соответствующие цифры восьмеричной системы, используя таблицу триад:
Перевод из двоичной системы в шестнадцатеричную
Также как и в первом способе разбиваем число на группы по 4 цифры. Заменим полученные группы (тетрады) на соответствующие цифры шестнадцатеричной системы, используя таблицу тетрад:
Тетрада | 0000 | 0001 | 0010 | 0011 | 0100 | 0101 | 0110 | 0111 | 1000 | 1001 | 1010 | 1011 | 1100 | 1101 | 1110 | 1111 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Цифра | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | A | B | C | D | E | F |
Перевод из восьмеричной системы в двоичную
Каждый разряд восьмеричного числа будем делить на 2 и записывать остатки в обратном порядке, формируя группы по 3 разряда двоичного числа. Если в группе получилось меньше 3 разрядов, тогда дополняем нулями. Записываем все группы по порядку, отбрасываем ведущие нули, если имеются, и получаем двоичное число.
Используем таблицу триад:
Каждую цифру исходного восьмеричного числа заменяется на соответствующие триады. Ведущие нули самой первой триады отбрасываются.
Перевод из шестнадцатеричной системы в двоичную
Аналогично переводу из восьмеричной в двоичную, только группы по 4 разряда.
Используем таблицу тетрад:
Цифра | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | A | B | C | D | E | F |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Тетрада | 0000 | 0001 | 0010 | 0011 | 0100 | 0101 | 0110 | 0111 | 1000 | 1001 | 1010 | 1011 | 1100 | 1101 | 1110 | 1111 |
Каждую цифру исходного числа заменяется на соответствующие тетрады. Ведущие нули самой первой тетрады отбрасываются.
Перевод из восьмеричной системы в шестнадцатеричную и наоборот
Такую конвертацию можно осуществить через промежуточное десятичное или двоичное число. То есть исходное число сначала перевести в десятичное (или двоичное), и затем полученный результат перевести в конечную систему счисления.
Перевод из двоичной системы счисления в восьмеричную
Для перевода чисел из двоичной системы в восьмеричную, воспользуемся соответствующим алгоритмом. Важно заметить, что алгоритм перевода целых и дробных чисел будет отличаться.
Алгоритм перевода двоичных чисел в восьмеричную систему счисления
Подробно о переводе из двоичной в десятичную систему смотрите на этой странице, о переводе из десятичной в восьмеричную — на смотрите здесь. Для целостного понимания, разберем несколько примеров, но для начала вспомним алфавиты двоичной, восьмеричной и десятичной систем счисления:
Основание | Название | Алфавит |
---|---|---|
2 | Двоичная | 0, 1 |
8 | Восьмеричная | 0, 1, 2, 3, 4, 5, 6, 7 |
10 | Десятичная | 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 |
Перевод целого двоичного числа в восьмеричную систему счисления
Пример 1: перевести 100100 из двоичной системы в восьмеричную.
Как было сказано выше, необходимо сначала перевести число в десятичное, а полученный ответ в восьмеричное. Решение будет выглядеть следующим образом:
Для перевода двоичного числа 100100 в десятичную систему, воспользуемся формулой:
1001002=1 ∙ 2 5 + 0 ∙ 2 4 + 0 ∙ 2 3 + 1 ∙ 2 2 + 0 ∙ 2 1 + 0 ∙ 2 0 = 1 ∙ 32 + 0 ∙ 16 + 0 ∙ 8 + 1 ∙ 4 + 0 ∙ 2 + 0 ∙ 1 = 32 + 0 + 0 + 4 + 0 + 0 = 3610
Полученное число 36 переведем из десятичной системы счисления в восьмеричную. Для этого, осуществим последовательное деление на 8, до тех пор пока остаток не будет меньше чем 8.
Полученные остатки записываем в обратном порядке, таким образом:
Перевод дробного двоичного числа в восьмеричную систему счисления
Пример 2: перевести 1000010.100 из двоичной в восьмеричную систему счисления.
Общий смысл алгоритма перевода дробного числа, аналогичен алгоритму перевода целого, т.е. вначале переводим в десятичную, а затем в восьмеричную:
1. Для перевода числа 1000010.100 в десятичную систему воспользуемся формулой:
Обратите внимание! Формула перевода дробного числа в десятичную систему, очень похожа на формулу перевода целого, однако немного отличается.
2. Полученное число 66.5 переведем из десятичной системы счисления в восьмеричную. Для этого потребуется перевести вначале целую часть, а затем дробную. Таким образом необходимо:
2.1 Для того, чтобы перевести число 66 из десятичной системы счисления в восьмеричную, необходимо осуществить последовательное деление на 8, то тех пор пока остаток не будет меньше чем 8.
Полученные остатки записываем в обратном порядке, таким образом:
2.2 Для перевода десятичной дроби 0.5 в восьмеричную систему, необходимо выполнить последовательное умножение дроби на 8, до тех пор, пока дробная часть не станет равной 0 или пока не будет достигнута заданная точность вычисления. Получаем:
Т.к. дробная часть 0, продолжать умножение не нужно. Ответом станет 0.4, т.е.
2.3. Осталось соединить переведенные части, таким образом:
Перевод чисел в различные системы счисления с решением
Исходное число записано в -ой системе счисления.
Хочу получить запись числа в -ой системе счисления.
Системы счисления
Системы счисления делятся на два типа: позиционные и не позиционные. Мы пользуемся арабской системой, она является позиционной, а есть ещё римская − она как раз не позиционная. В позиционных системах положение цифры в числе однозначно определяет значение этого числа. Это легко понять, рассмотрев на примере какого-нибудь числа.
Пример 1. Возьмём число 5921 в десятичной системе счисления. Пронумеруем число справа налево начиная с нуля:
Число: | 5 | 9 | 2 | 1 |
Позиция: | 3 | 2 | 1 | 0 |
Пример 2. Рассмотрим вещественное десятичное число 1234.567. Пронумеруем его начиная с нулевой позиции числа от десятичной точки влево и вправо:
Число: | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
Позиция: | 3 | 2 | 1 | 0 | -1 | -2 | -3 |
Перевод чисел из одной системы счисления в другую
Наиболее простым способом перевода числа с одной системы счисления в другую, является перевод числа сначала в десятичную систему счисления, а затем, полученного результата в требуемую систему счисления.
Перевод чисел из любой системы счисления в десятичную систему счисления
Для перевода числа из любой системы счисления в десятичную достаточно пронумеровать его разряды, начиная с нулевого (разряд слева от десятичной точки) аналогично примерам 1 или 2. Найдём сумму произведений цифр числа на основание системы счисления в степени позиции этой цифры:
Перевод чисел из десятичной системы счисления в другую систему счисления
Для перевода чисел из десятичной системы счисления в другую систему счисления целую и дробную части числа нужно переводить отдельно.
Перевод целой части числа из десятичной системы счисления в другую систему счисления
Целая часть переводится из десятичной системы счисления в другую систему счисления с помощью последовательного деления целой части числа на основание системы счисления до получения целого остатка, меньшего основания системы счисления. Результатом перевода будет являться запись из остатков, начиная с последнего.
Рассмотрим перевод правильных десятичных дробей в различные системы счисления.
Перевод дробной части числа из десятичной системы счисления в другую систему счисления
Напомним, правильной десятичной дробью называется вещественное число с нулевой целой частью. Чтобы перевести такое число в систему счисления с основанием N нужно последовательно умножать число на N до тех пор, пока дробная часть не обнулится или же не будет получено требуемое количество разрядов. Если при умножении получается число с целой частью, отличное от нуля, то целая часть дальше не учитывается, так как последовательно заносится в результат.
Programforyou — это сообщество, в котором Вы можете подтянуть свои знания по программированию, узнать, как эффективно решать те или иные задачи, а также воспользоваться нашими онлайн сервисами.