шестнадцатеричный код двоичного числа 10111000
Перевести число 10111000 из шестнадцатеричной системы в двоичную
Задача: перевести число 10111000 из шестнадцатеричной в двоичную систему счисления.
Для перевода 10111000 из шестнадцатеричной в двоичную систему счисления, воспользуемся следующим алгоритмом:
1. Для перевода числа 10111000 в десятичную систему воспользуемся формулой:
1011100016=1 ∙ 16 7 + 0 ∙ 16 6 + 1 ∙ 16 5 + 1 ∙ 16 4 + 1 ∙ 16 3 + 0 ∙ 16 2 + 0 ∙ 16 1 + 0 ∙ 16 0 = 1 ∙ 268435456 + 0 ∙ 16777216 + 1 ∙ 1048576 + 1 ∙ 65536 + 1 ∙ 4096 + 0 ∙ 256 + 0 ∙ 16 + 0 ∙ 1 = 268435456 + 0 + 1048576 + 65536 + 4096 + 0 + 0 + 0 = 26955366410
2. Полученное число 269553664 переведем из десятичной системы счисления в двоичную. Для этого, осуществим последовательное деление на 2, до тех пор пока остаток не будет меньше чем 2.
— | 269553664 | 2 | ||
269553664 | — | 134776832 | 2 | |
0 | 134776832 | — | 67388416 | 2 |
0 | 67388416 | — | 33694208 | 2 |
0 | 33694208 | — | 16847104 | 2 |
0 | 16847104 | — | 8423552 | 2 |
0 | 8423552 | — | 4211776 | 2 |
0 | 4211776 | — | 2105888 | 2 |
0 | 2105888 | — | 1052944 | 2 |
0 | 1052944 | — | 526472 | 2 |
0 | 526472 | — | 263236 | 2 |
0 | 263236 | — | 131618 | 2 |
0 | 131618 | — | 65809 | 2 |
0 | 65808 | — | 32904 | 2 |
1 | 32904 | — | 16452 | 2 |
0 | 16452 | — | 8226 | 2 |
0 | 8226 | — | 4113 | 2 |
0 | 4112 | — | 2056 | 2 |
1 | 2056 | — | 1028 | 2 |
0 | 1028 | — | 514 | 2 |
0 | 514 | — | 257 | 2 |
0 | 256 | — | 128 | 2 |
1 | 128 | — | 64 | 2 |
0 | 64 | — | 32 | 2 |
0 | 32 | — | 16 | 2 |
0 | 16 | — | 8 | 2 |
0 | 8 | — | 4 | 2 |
0 | 4 | — | 2 | 2 |
0 | 2 | 1 | ||
0 |
Полученные остатки записываем в обратном порядке, таким образом:
Ответ: 1011100016 = 100000001000100010000000000002.
Перевод числа 10111000 из шестнадцатеричной системы счисления в двоичную
Для перевода числа 10111000 из шестнадцатеричной в двоичную систему счисления, необходимо сначала перевести его в десятичную систему, а полученное число в двоичную. Для перевода шестнадцатеричного числа 10111000 в десятичное необходимо записать его в виде многочлена, состоящего из произведений цифр вида:
В результате преобразований получим:
1011100016=1 ∙ 16 7 + 0 ∙ 16 6 + 1 ∙ 16 5 + 1 ∙ 16 4 + 1 ∙ 16 3 + 0 ∙ 16 2 + 0 ∙ 16 1 + 0 ∙ 16 0 = 1 ∙ 268435456 + 0 ∙ 16777216 + 1 ∙ 1048576 + 1 ∙ 65536 + 1 ∙ 4096 + 0 ∙ 256 + 0 ∙ 16 + 0 ∙ 1 = 268435456 + 0 + 1048576 + 65536 + 4096 + 0 + 0 + 0 = 26955366410
Для перевода десятичного числа 269553664 в двоичную систему счисления, необходимо его последовательно делить на 2 до тех пор, пока остаток не станет меньше чем 2.
— | 269553664 | 2 | ||
269553664 | — | 134776832 | 2 | |
0 | 134776832 | — | 67388416 | 2 |
0 | 67388416 | — | 33694208 | 2 |
0 | 33694208 | — | 16847104 | 2 |
0 | 16847104 | — | 8423552 | 2 |
0 | 8423552 | — | 4211776 | 2 |
0 | 4211776 | — | 2105888 | 2 |
0 | 2105888 | — | 1052944 | 2 |
0 | 1052944 | — | 526472 | 2 |
0 | 526472 | — | 263236 | 2 |
0 | 263236 | — | 131618 | 2 |
0 | 131618 | — | 65809 | 2 |
0 | 65808 | — | 32904 | 2 |
1 | 32904 | — | 16452 | 2 |
0 | 16452 | — | 8226 | 2 |
0 | 8226 | — | 4113 | 2 |
0 | 4112 | — | 2056 | 2 |
1 | 2056 | — | 1028 | 2 |
0 | 1028 | — | 514 | 2 |
0 | 514 | — | 257 | 2 |
0 | 256 | — | 128 | 2 |
1 | 128 | — | 64 | 2 |
0 | 64 | — | 32 | 2 |
0 | 32 | — | 16 | 2 |
0 | 16 | — | 8 | 2 |
0 | 8 | — | 4 | 2 |
0 | 4 | — | 2 | 2 |
0 | 2 | 1 | ||
0 |
Ответом будет являться обратная последовательность результатов деления:
Перевод чисел из одной системы счисления в другую
Данный конвертер переводит числа между наиболее популярными системами счисления: десятичной, двоичной, восьмеричной, шестнадцатеричной.
Существуют и другие системы счисления, но мы не стали включать их в конвертер из-за низкой популярности.
Для указания системы счисления при записи числа используется нижний индекс, который ставится после числа:
20010 = 110010002 = 3108 = C816
Кратко об основных системах счисления
Десятичная система счисления. Используется в повседневной жизни и является самой распространенной. Все числа, которые нас окружают представлены в этой системе. В каждом разряде такого числа может использоваться только одна цифра от 0 до 9.
Двоичная система счисления. Используется в вычислительной технике. Для записи числа используются цифры 0 и 1.
Восьмеричная система счисления. Также иногда применяется в цифровой технике. Для записи числа используются цифры от 0 до 7.
Перевод в десятичную систему счисления
Перевод из десятичной системы счисления в другие
Делим десятичное число на основание системы, в которую хотим перевести и записываем остатки от деления. Запишем полученные остатки в обратном порядке и получим искомое число.
Переведем число 37510 в восьмеричную систему:
Перевод из двоичной системы в восьмеричную
Так же как и в первом способе разбиваем число на группы. Но вместо преобразований в скобках просто заменим полученные группы (триады) на соответствующие цифры восьмеричной системы, используя таблицу триад:
Перевод из двоичной системы в шестнадцатеричную
Также как и в первом способе разбиваем число на группы по 4 цифры. Заменим полученные группы (тетрады) на соответствующие цифры шестнадцатеричной системы, используя таблицу тетрад:
Тетрада | 0000 | 0001 | 0010 | 0011 | 0100 | 0101 | 0110 | 0111 | 1000 | 1001 | 1010 | 1011 | 1100 | 1101 | 1110 | 1111 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Цифра | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | A | B | C | D | E | F |
Перевод из восьмеричной системы в двоичную
Каждый разряд восьмеричного числа будем делить на 2 и записывать остатки в обратном порядке, формируя группы по 3 разряда двоичного числа. Если в группе получилось меньше 3 разрядов, тогда дополняем нулями. Записываем все группы по порядку, отбрасываем ведущие нули, если имеются, и получаем двоичное число.
Используем таблицу триад:
Каждую цифру исходного восьмеричного числа заменяется на соответствующие триады. Ведущие нули самой первой триады отбрасываются.
Перевод из шестнадцатеричной системы в двоичную
Аналогично переводу из восьмеричной в двоичную, только группы по 4 разряда.
Используем таблицу тетрад:
Цифра | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | A | B | C | D | E | F |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Тетрада | 0000 | 0001 | 0010 | 0011 | 0100 | 0101 | 0110 | 0111 | 1000 | 1001 | 1010 | 1011 | 1100 | 1101 | 1110 | 1111 |
Каждую цифру исходного числа заменяется на соответствующие тетрады. Ведущие нули самой первой тетрады отбрасываются.
Перевод из восьмеричной системы в шестнадцатеричную и наоборот
Такую конвертацию можно осуществить через промежуточное десятичное или двоичное число. То есть исходное число сначала перевести в десятичное (или двоичное), и затем полученный результат перевести в конечную систему счисления.
Шестнадцатеричный код.
Шестнадцатеричная система счисления (также — шестнадцатеричный код) является позиционной системой счисления с целочисленным основанием 16. Иногда в литературе также используется термин hex (произносится «хекс», сокращение от англ. hexadecimal). Цифрами данной системы счисления принято использовать арабские цифры 0—9, а также первые символы латинского алфавита A—F. Буквы соответствуют следующим десятичным значениями:
Таким образом, десять арабских цифр вкупе с шестью латинскими буквами и составляют шестнадцать цифр системы.
Кстати, на нашем сайте вы можете перевести любой текст в десятичный, шестнадцатеричный, двоичный код воспользовавшись Калькулятором кодов онлайн.
Применение. Шестнадцатеричный код широко применяется в низкоуровневом программировании, а также в различных компьютерных справочных документах. Популярность системы обоснована архитектурными решениями современных компьютеров: в них в качестве минимальной единицы информации установлен байт (состоящий из восьми бит) — а значение байта удобно записывать с помощью двух шестнадцатеричных цифр. Значение байта может ранжироваться с #00 до #FF (от 0 до 255 в десятичной записи) — другими словами, используя шестнадцатеричный код, можно записать любое состояние байта, при этом не остаётся «лишних» не используемых в записи цифр.
В кодировке Юникод для записи номера символа используется четыре шестнадцатеричных цифры. Запись цвета стандарта RGB (Red, Green, Blue — красный, зелёный, синий) также часто использует шестнадцатеричный код (например, #FF0000 — запись ярко-красного цвета).
Способ записи шестнадцатеричного кода.
Математический способ записи. В математической записи основание системы записывают в десятичном виде в нижнем индексе справа от числа. Десятичную запись числа 3032 можно записать как 303210, в шестнадцатеричной системе данное число будет иметь запись BD816.
В синтаксисе языков программирования. Синтаксис различных языков программирования по-разному устанавливает формат записи числа, использующего шестнадцатеричный код:
* В C, C++ и схожих языках (Java) для этого используется префикс «0x», например: 0x0A0B;
* В синтаксисе некоторых разновидностей языка ассемблера используется латинская буква «h», которая ставится справа от числа, например: 20Dh. Если число начинается с латинской буквы, то перед ним ставится ноль, например: 0A0Bh. Это сделано для того, чтобы отличать от констант значения, использующие шестнадцатеричный код;
* В языке разметки HTML, а также в каскадных файлах CSS, для указания цвета в формате RGB с шестнадцатеричной системой записи, используется префикс «#»: #00DC00.
Как перевести шестнадцатеричный код в другую систему?
Перевод из шестнадцатеричной системы в десятичную. Для совершения операции перевода из шестнадцатеричной системы в десятичную, требуется представить исходное число как сумму произведений цифр в разрядах шестнадцатеричного числа на степень основания.
Перевод чисел из одной системы счисления в любую другую онлайн
Ура. Вам стало интересно как получилось данное число
Вы ввели число:1101001111012 в двоичной системе счисления и хотите перевести его в 16-ричную.
Для этого переведем его сначала в десятичную вот так :
1101001111012 = 1∙2 11 +1∙2 10 +0∙2 9 +1∙2 8 +0∙2 7 +0∙2 6 +1∙2 5 +1∙2 4 +1∙2 3 +1∙2 2 +0∙2 1 +1∙2 0 = 2048+1024+0+256+0+0+32+16+8+4+0+1 = 338910
Переведем 338910 в 16-ричную систему вот так:
Целая часть числа находится делением на основание новой
3389 | 16 | |
-3376 | 211 | 16 |
13=D | -208 | 13 |
3 | ||
Получилось: 338910 = d3d16
Результат перевода:
1101001111012 = d3d16
Постоянная ссылка на результат этого расчета
Калькулятор перевода чисел имеет одно поле для ввода. В это поле необходимо ввести число которое Вы хотите перевести.
После этого Вам обязательно нужно указать в какой системе счисления Вы его ввели. Для этого под полем ввода есть графа «Его система счисления».
После нажмите кнопку «ПЕРЕВЕСТИ» и результат появится в соответствующем поле. Если Вы хотите получить подробный ход решения, то нажмите на соответствующую ссылку.
Научиться переводить число из одной системы счисления в другую очень просто.
Любое число может быть легко переведено в десятичную систему по следующему алгоритму:
Каждая цифра числа должна быть умножена на основание системы счисления этого числа возведенное в степень равное позиции текущей цифры в числе справа налево, причём счёт начинается с 0.