что такое мода в оптике
1.3. СВОЙСТВА СВЕТОВОДА, ОСНОВАННЫЕ НА ЗАКОНАХ ЭЛЕКТРОМАГНИТНОГО ПОЛЯ
1.3.1 Волновая трактовка световых процессов. Классы волн
Волны подразделяются на классы и типы.
На уровне электромагнитного взаимодействия с молекулами учитывается явление электрической поляризации, пространственные электрические E и магнитные H поля. Они допускают колебания соответствующих векторов (E, H) только в определённых плоскостях.
Волноведущую систему можно представить идеальным цилиндром с продольной осью z, а оси x и y образуют поперечную (xy), горизонтальную (xz) и вертикальную (yz) плоскости. В этой системе выделяют 4 класса волн по признаку отсутствия либо наличия продольных составляющих Ez и Hz (рисунок 1.7).
Следует обратить внимание на то, что термин «электрическая волна» не означает, что существует лишь электрическое поле и лишь вектор напряжённости электрического поля. В этой волне, как и во всех направляемых волнах, существует электромагнитное поле, т.е. обязательно электрический и магнитный векторы.
1.3.2 Типы волн (моды)
Рисунок 1.8 – Пояснение к понятию «тип волны»
Оказывается, что в ВС существуют только два типа волн HEnm и EHnm.
При n=0 имеем симметричные моды E0m и H0m.
При n≥1 имеем несимметричные (гибридные) моды HEnm и EHnm.
Часть внеапертурных лучей распространяется в оболочке, соответствующие им моды называют оболочечными. Они играют определённую роль в улучшении характеристик световодов. Чем меньше диаметр сердцевины dc, тем меньше сечение светового потока, поступающего в оптическое волокно, тем меньше различных типов колебаний (обусловленных множеством решений уравнений Максвелла), или мод, возникает в нём.
В ОМ волоконом световоде поддерживается только одна гибридная мода HE11, называемая основной модой. В ММ волоконном световоде поддерживаются различные, как гибридные моды так и Е- и Н- моды.
Не все моды указанных наборов можно реализовать. Чтобы понять, какие моды могут возникнуть, нужно провести достаточно сложный и кропотливый анализ. Сопоставляя волновую теорию с геометрической оптикой, следует отметить, что симметричные моды E0m и H0m соответствуют меридиональным лучам, несимметричные (смешанные) моды HEnm и EHnm – косым лучам.
1.3.3 Структура поля
Как мы убедились, вдоль круглого неоднородного диэлектрического световода с осесимметричным распределением ε в сердцевине возможно распространение дискретного числа различных по структуре поля типов колебаний (мод) (рисунок 1.9).
а – мода самого низкого порядка; б – первый ряд мод более высоких порядков
Рисунок 1.9 – Картины векторов поперечного электрического поля в поперечном сечении сердцевины ступенчатого волоконного световода для четырёх мод самых низких порядков
Они отличаются кроме числа вариаций поля по азимуту и радиусу ещё и соотношением между продольными компонентами Ez и Hz.
1.3.4 Оптические параметры световода
Основными электродинамическими характеристиками регулярного световода при небольшом числе распространяющихся мод являются:
Рисунок 1.10 – Дисперсионные характеристики ступенчатого волоконного световода для нескольких первых мод
Эти дисперсионные характеристики начинаются при с/υф=n2.
С увеличением V; фазовые скорости уменьшаются, но всегда находятся в пределах:
Равенство с/υф=n2 представляет собой условие частоты отсечки Vотс.
Частота отсечки – предельная частота, ниже которой невозможно возникновение моды с определёнными индексами. Точки на оси абсцисс, в которых начинаются дисперсионные кривые, соответствуют критическим значениям нормированной частоты V.
Нормированную частоту отсечки Vотс также называют нормированной критической частотой Vkp. На частоте отсечки поле выходит из сердцевины в оболочку и мода исчезает.
Направляемую волну, имеющую наименьшую критическую частоту в данной среде распространения, называют основной волной.
В волоконном световоде для основной волны НЕ11 Vkp=0.
Для основной волны может быть реализован одноволновый или одномодовый режим в пределах от критической частоты основного типа до критической частоты волны ближайшего типа.
Если на заданной рабочей частоте параметры световода выбрать так, чтобы следующие высшие моды Е01, H01, HЕ21 с более высокими частотами отсечки не могли распространяться, то получим одномодовый световод, т.е. световод с одной только распространяющейся модой HЕ11. В этом случае должно выполняться условие одномодовости для двухслойного световода. Расчёт на основе уравнений Максвелла и рисунок 1.10 позволяют найти простой критерий распространения одной наинизшей моды:
0 2,405, то режим работы волоконного световода многомодовый. На этой стадии удобно перейти к рассмотрению ненормированных критических параметров. Для определения критической частоты и критической длины волны мод более высоких порядков можно воспользоваться следующими формулами: 1.3.5 Диаметр поля модыВвиду сложности точных решений поперечное поле моды (называемое также пятном моды) аппроксимируется гауссовской кривой вида
где rnm – фактический радиус поля (пятна) моды На практике размер, или диаметр, поля моды dпм определяется по ширине указанной гауссовской кривой распределения поперечного поля на уровне 1/e=0,368 от максимума. Он сравним с диаметром сердцевины dc в ОМ световоде из-за наличия экспоненциально спадающего поля моды за границами сердцевины. Производители приводят измеренное значение диаметра поля моды dпм в качестве нормируемого параметра ОМ световода, эквивалентного физическому диаметру сердцевины. Диаметр поля основной моды для типичного ОМ световода составляет dпм=12,7мкм на длине волны λ=1150нм и dпм=9,4мкм на длине волны λ=1230нм и сложно зависит от длины волны. 1.3.6 Число мод многомодового световодаЧисло мод, возникающих в ММ ВС со ступенчатым профилем показателя преломления, можно оценить, используя формулу: С помощь формулы (1.6) и (1.9) получим Значение этого выражения может быть как целым, так и дробным. В действительности число мод может быть только целым (от одной до нескольких тысяч). Поэтому расчётные значения N округляются в меньшую сторону. Число мод для градиентного световода с параболическим профилем показателя преломления сердцевины: Так, для широко используемого ММ световода с минимальным диаметром сердцевины dc=50мкм и числовой апертурой NA=0,20 при длине волны источника λ=1300нм, получаем N=292 для ступенчатого и N=146 для плавного профиля показателя преломления. При переходе к меньшим диаметрам сердцевины dc, меньшим разностям n1 и n2 и большим λ количество мод уменьшается. Что такое мода в оптикеВ следующем разделе обсуждаются различные моды оптических волокон и эффекты модовой дисперсии. 3.4.2. Модовая дисперсияВажно для начала рассмотреть природу и свойства модовой передачи. У волокна с большое апертурой и/или диаметром будет большое число мод (лучей света), распространяющихся на протяжении этого волокна. Ненаправленный источник света (то есть такой, который одинаков излучает лучи во всех направлениях) вроде светодиода в одном импульсе излучает несколько тысяч световых лучей. Поскольку источник света вводит в сердечник пучок света с больше, углом, каждая мода света, распространяющаяся вдоль волокна с отличающимся углом, пройдет различное расстояние. Следовательно, время прохождения волокна от начала до конца будет для различных лучей разным. Световой передатчик вводит в волокно все моды одновременно, сигнал в начале волокна выглядит в виде короткого острого импульса. К тому времени, когда сигнал достигнет конца волокна, он растянется и будет выглядеть как удлиненный импульс. Это явление называется «модовой дисперсией» (рис. 3.13). Рис. 3.13. Эффект дисперсии импульса вследствие многомодового распространенияИллюстрация к межмодовой дисперсии на странице → Многомодовое оптоволокно Если входные импульсы расположены близко друг к другу, выходные импульсы начнут перекрываться друг с другом, вызывая в приемнике интерференцию различных символов. Эта ситуация затрудняет различение импульсов приемником и создает ошибки данных. Это главный фактор, ограничивающий скорости передачи в многомодовых типах волоконно-оптических кабелей (рис. 3.14). Рис. 3.14. Межсимвольная интерференция вследствие модовой дисперсииИз этой диаграммы можно видеть, что приемнику будет трудно различить выходные импульсы, когда они на выходе из сердечника волокна перекроют друг друга (межсимвольная интерференция). Модовая дисперсия измеряется в наносекундах и вычисляется по следующей формуле: Модовая дисперсия возрастает с увеличением числовой апертуры, следовательно, полоса пропускания волокна снижается с увеличением апертуры. То же правило применимо к увеличению диаметра волокна. Это показано на графике на рис. 3.15. Поставщики кабелей указывают в технических характеристиках кабеля величину дисперсии. В качестве единиц измерения используется время удлинения импульса в пикосекундах (или наносекундах) на километр волокна (пс/км). Обычно поставщик не указывает эту цифру непосредственно, но ее легко вычислить по полосе пропускания. Например, полоса пропускания 400 МГц/км представляет максимальную модовую дисперсию, которую вы можете ожидать от волокна, 1/400 МГц/км, что равно 2,5 нс/км. В разделе 8.3.2 описаны методики вычисления результатов модовой дисперсии в системе. Оптические волокна. Классификация.Оптические волокно стандарт де-факто при построении магистральных сетей связи. Протяженность волоконно-оптических линий связи в России у крупных операторов связи достигает > 50 тыс.км. В статье попробую написать просто о оптических волокнах, без математических выкладок и с простыми человеческими объяснениями. Статья чисто ознакомительная, т.е. не содержит уникальных знаний, всё что будет описано может быть найдено в куче книг, однако, это не копипаст, а выжимка из «кучи» информации только лишь сути. КлассификацияЧаще всего волокна подразделяют на 2 общих типа волокон дадим пояснение на «бытовом» уровне что есть одномод и многомод. Подумаем как свет вводится в волокно: 2) Если же сердцевина маленькая (одномодовое волокно), то путей распространения волн соотвественно уменьшается. И так как дополнительных мод гораздо меньше, то и не будет и модовой дисперсии (о ней ниже). Это основное отличие многомодового и одномодового волокон. Многомодовые в свою очередь делятся на волокна со ступенчатым показателем преломления (step index multi mode fiber) и с градиентным (graded index m/mode fiber). Одномодовые делятся на ступенчатые, стандартные (standard fiber), со смещенной дисперсией (dispersion-shifted) и ненулевой смещенной дисперсией (non-zero dispersion-shifted) Конструкция оптического волокнаКаждое волокно состоит из сердцевины и оболочки с разными показателями преломления. Так, например, запись 50/125 говорит о том, что диаметр сердцевины равен 50 мкм, оболочки — 125мкм. Диаметры сердцевины равные 50мкм и 62,5мкм являются признаками многомодовых оптических волокон, а 8-10мкм, соответственно, одномодовым. Как видно диаметр сердцевины одномодового волокна имеет намного меньший размер, нежели диаметр многомодового. Меньший диаметр сердцевины позволяет уменьшить модовую дисперсию (о которой, возможно, будет написано в отдельной статье, а также вопросы распространения света в волокне), а соответственно увеличить дальность передачи. Однако, тогда бы одномодовые волокна вытеснили многомоды, благодаря более лучшим «транспортным» характеристикам, если бы не необходимость использовать дорогие лазеры с узким спектром излучения. В многомодовых волокнах используются светодиоды с более размазанным спектром. Поэтому для недорогих оптических решений, таких как локальные сети интернет-провайдеров применения многомода случается. Профиль показателя преломленияВся пляска с бубном у волокна с целью увеличения скорости передачи была вокруг профиля показателя преломления. Так как основным сдерживающим фактором увеличения скорости является модовая дисперсия. Здесь отображены 3 профиля преломления: Области применения оптических волокон
К этому можно добавить, что магистральные кабели теперь все почти идут с ненулевой смещенной дисперсий, что позволяет использовать на этих кабелях спектральное волновое уплотнение (WDM) без нужды замены кабеля. Спасибо тем, кто конструктивно критиковал. PS Распространение света в одномодовых и многомодовых волноводахМода – это одно из общих понятий, применяемых в оптике. Математически волноводная мода определяется как решение волнового уравнения, удовлетворяющее соответствующим граничным условиям и пространственное распределение которого не изменяется в продольном направлении. Моды, локализованные в оптическом волноводе, называются направляемыми модами, а моды, неограниченные в поперечном направлении, называются модами утечки. Распространение сигналов в системах волоконно-оптической связи происходит только в виде направляемых мод. На языке волновой оптики каждая волноводная мода формируется интерференционным сложением парциальных волн в плоскости, перпендикулярной оси волновода.
Распределение моды низшего порядка (поперечный индекс m=0) соответствует одному периоду косинуса (см. на рис. 1). Моды более высокого порядка характеризуются осциллирующим распределением поля. Направляемая мода наивысшего порядка пересекает поверхность под углом, значение которого почти равно величине критического угла. В идеальном диэлектрическом волноводе (т.е. волноводе без потерь) на любой фиксированной частоте может распространяться лишь конечное число волноводных мод.
Уменьшая диаметр сердцевины и разность показателей преломления сердцевины и оболочки можно добиться распространения по волноводу лишь одной моды. Такой оптический волновод называется одномодовым. Характер распространения света в одномодовых и многомодовых волноводахХарактер распространения света в одномодовых и многомодовых волноводах очень существенно отличается. Волновой фронт световой волны, распространяющийся в одномодовом волноводе, остается неизменным, что иллюстрирует рис. 1. В одномодовом волноводе всегда распространяется волна, поперечная структура которой имеет колоколообразный вид (рис. 1а). Как бы не изменялись условия ввода входного пучка, форма распространяющегося пучка остается неизменной (рис. 2). Совсем другой характер распространения наблюдается в градиентном волноводе (см. рис. 4). Оптические волокна для телекоммуникаций: кварцевые и не толькоВремя от времени на Хабре появляются различные статьи на тему волоконно-оптических линий связи (ВОЛС), что неудивительно, поскольку оптическая связь сегодня является одним из основных способов передачи информации. Оптические линии связи успешно конкурируют с традиционными медными линиями и беспроводными технологиями. Именно оптическому волокну мы во многом обязаны резким увеличением объема и скорости передаваемой по всему миру информации за последние годы и, в частности, развитием Интернета. Более того, с каждым годом оптическое волокно становится все ближе к потребителю и осваивает все новые сферы применения. Мы уверены, что каждый уважающий себя IT-специалист должен иметь хотя бы общее представление о ВОЛС, независимо от того, чем конкретно он занимается. Предлагаемая вашему вниманию статья посвящена разновидностям и классификации оптических волокон. Конечно, сейчас можно легко найти очень много разной информации на эту тему. Но, как вы увидите дальше, и нам есть что рассказать. Тем более что на Хабре пока тема оптического волокна освещена, как нам кажется, в недостаточной степени. Но для начала немного о себеКомпания «ЭФО» занимается поставками импортных электронных компонентов на российский рынок с 1991 года. Последние 15 лет (с 2001 г.) наша программа поставок включает волоконно-оптические и оптоэлектронные компоненты. Исторически сложилось, что основными нашими клиентами являются представители разных отраслей промышленности. «ЭФО» имеет несколько специализированных сайтов под разные группы продукции. Оптической связи посвящен сайт infiber.ru, которым занимаются сотрудники Отдела волоконно-оптических компонентов. Сайт содержит каталог волоконно-оптической продукции, которую мы поставляем. Также здесь публикуются новости производителей и статьи, написанные сотрудниками отдела. Наш сайт создан недавно, но активно развивается. Цель данной статьиКак уже упоминалось, в этой статье мы хотели рассказать не столько о самом оптическом волокне, сколько о его разновидностях и классификации. Большинство читателей, скорее всего, знает разницу между одномодом и многомодом, но мы хотим дать более детальную информацию, чтобы Вы могли легко ориентироваться в многообразии современных волокон и их свойствах и не испытывали затруднений с вопросами, которые возникают в практической работе, например: Опыт общения с заказчиками показывает, что эти и другие вещи, связанные с классификацией волокон, известны далеко не всем (напомним, наши клиенты в основном работают в промышленности и чаще всего являются специалистами каждый в своей области). Поэтому считаем, что подобная информация будет крайне полезной. Очень надеемся, что одной статьей наше совместное обсуждение темы ВОЛС на Хабре не закончится. Немного забегая вперед, отметим, что одной из главных особенностей этой статьи мы считаем знакомство читателей с волокнами POF и HCS, поскольку 1) эти волокна набирают все большую популярность в промышленности и других сферах и 2) в отличие от традиционных кварцевых волокон они не так хорошо освещены в русскоязычном интернете. И последнее. Недавно мы разместили на нашем сайте пять статей, в которых более подробно рассказывается об оптическом волокне и его основных типах. Кому информации, изложенной ниже, окажется недостаточно, добро пожаловать к нам на сайт! Оптическое волокно и его основные характеристикиИсходя из поставленной задачи (представить классификацию оптических волокон), мы не хотели бы сильно углубляться в теоретические основы волоконно-оптической связи. Но для того чтобы информация была понятна широкому кругу читателей, начнем все-таки с того, что представляет собой оптическое волокно, каким образом по нему передается сигнал и каковы его некоторые основные характеристики. Оптическое волокно (оптоволокно) – это волновод с круглым поперечным сечением, по которому передается электромагнитное излучение оптического диапазона (обычно ближний ИК и видимый свет). Оптическое волокно состоит из двух основных частей: сердцевины и оптической оболочки. Диаметр этой структуры сравним с толщиной человеческого волоса. Сверху на оптоволокно наносится защитное акриловое покрытие. Для дальнейшей защиты используются различные упрочняющие и защитные элементы. Конструкция, содержащая одно или несколько оптических волокон и различные защитные элементы, покрытые общей оболочкой, называется волоконно-оптическим кабелем. Информационный сигнал передается по оптическому волокну в виде модулированного светового излучения. Благодаря явлению полного внутреннего отражения (вспомните школьный курс геометрической оптики), свет, попавший в оптоволокно, распространяется по нему на большие расстояния. Сердцевина и оптическая оболочка волокна изготавливаются из материалов с незначительно отличающимися показателями преломления (показатель преломления сердцевины больше). Поэтому световые волны, попавшие в сердцевину под углами, меньшими некоторого критического значения, многократно переотражаются от оболочки. Если при этом выполняются условия для распространения в волноводе (свет – это не только поток частиц, но и электромагнитная волна), то такие световые волны, называемые модами, распространяются на значительные расстояния. Помимо разницы между показателями преломления сердцевины и оболочки важную роль играет профиль показателя преломления сердцевины, то есть зависимость величины показателя преломления от радиуса поперечного сечения оптоволокна. Если показатель преломления остается одинаковым во всех точках сечения сердцевины, такой профиль называется ступенчатым, если плавно уменьшается от центральной оси к оболочке, – градиентным. Встречаются и более сложные профили. Профиль показателя преломления оказывает большое влияние на характеристики оптического волокна как среды передачи информации. Среди большого числа характеристик и параметров, описывающих оптическое волокно как среду передачи данных, отметим наиболее важные – затухание (потери) и дисперсию. Затухание – это постепенное ослабление мощности оптического сигнала по мере распространения по оптоволокну, вызванное разными физическими процессами. Величина затухания имеет сложную зависимость от длины волны излучения и измеряется в дБ/км. Затухание служит одним из главных факторов, ограничивающих дальность передачи сигнала по оптическому волокну (без ретрансляции). Дисперсия – это уширение оптического импульса, передаваемого по оптоволокну, во времени. При высокой частоте следования импульсов такое уширение на некотором расстоянии от передатчика приводит к перекрыванию соседних импульсов и ошибочному приему данных. Дисперсия ограничивает как дальность, так и скорость передачи информации. Разновидности и классификация оптических волоконРассказав (или напомнив) читателю об этих базовых понятиях, перейдем к тому, ради чего все это излагалось, – к классификации оптических волокон. Существует огромное количество различных оптических волокон, поэтому сразу сделаем оговорку, что мы не будем касаться так называемых специальных волокон, используемых в научных исследованиях и разных специфических применениях, а также волокон, которые пока являются скорее технологиями будущего. Мы сосредоточимся на тех типах оптических волокон, которые уже сегодня широко используются в телекоммуникациях. А таких типа четыре. Основными критериями, по которым проводится классификация, можно считать следующие два: Таким образом, можно выделить четыре больших класса оптических волокон (ссылки ведут к соответствующим статьям на infiber.ru): На рисунке ниже изображены поперечные сечения этих четырех типов волокон (соотношение размеров сохранено). Поговорим подробнее о каждом из этих типов. 1. Кварцевое многомодовое волокноКварцевые волокна являются самым известным и распространенным типом оптических волокон. Поскольку многомодовые и одномодовые кварцевые волокна сильно отличаются по своим характеристикам и применению, удобнее рассмотреть их по отдельности. Многомодовое кварцевое волокно имеет и сердцевину, и оптическую оболочку из кварцевого стекла. Как правило, такое оптоволокно имеет градиентный профиль показателя преломления. Это необходимо, чтобы снизить влияние межмодовой дисперсии. Как было показано выше, моды распространяются в оптическом волокне по разным траекториям, а значит, время распространения каждой моды также отличается. Это приводит к уширению передаваемого импульса. Градиентный профиль уменьшает разницу во времени распространения мод. За счет плавного изменения показателя преломления моды высшего порядка, которые попадают в волокно под бо́льшим углом и распространяются по более длинным траекториям, имеют и бо́льшую скорость, чем те, которые распространяются вблизи сердцевины. Полностью устранить влияние межмодовой дисперсии невозможно, поэтому многомодовое волокно уступает одномодовому по дальности и скорости передачи информации. Рабочими для многомодового волокна обычно являются длины волн 850 и 1300 (1310) нм. Типичное затухание на этих длинах волн – 3,5 и 1,5 дБ/км соответственно. Классификация. Кварцевое многомодовое волокно было первым типом волокна, которое стало широко применяться на практике. Распространение получили два стандартных размера многомодовых волокон (диаметр сердцевины/оболочки): 62,5/125 мкм и 50/125 мкм. Общепринятая классификация многомодовых кварцевых волокон приводится в стандарте ISO/IEC 11801. Этот стандарт выделяет четыре класса многомодовых волокон (OM – Optical Multimode), отличающиеся шириной полосы пропускания (параметр, характеризующий межмодовую дисперсию и определяющий скорость передачи информации): Фраза «оптимизированное для работы с лазером» напоминает о том, что изначальна для передачи сигнала по многомодовому волокну использовались светодиоды (LED). С появлением полупроводниковых лазеров стали разрабатываться волокна более совершенной структуры, названные оптимизированными для работы с лазерами. Применение. Многомодовое волокно применяется в непротяженных линиях связи (обычно сотни метров), причем волокно 50/125 мкм (OM2, OM3, OM4) используется в основном в локальных сетях и дата-центрах, а волокно 62,5/125 мкм часто применяется в индустриальных сетях. В гигабитных приложениях рекомендуется применять волокна классов OM3 и OM4. Причина, по которой многомодовое волокно до сих пор не вытеснено одномодовым волокном, обладающим лучшими характеристиками, заключается в меньшей стоимости компонентов линии (активное оборудование, соединительные изделия). Цена снижается из-за большего диаметра сердцевины многомодового волокна, и, соответственно, меньших требований к точности изготовления и монтажа компонентов. 2. Кварцевое одномодовое волокноВ одномодовом волокне, как следует из названия, распространяется только одна (основная) мода излучения. Это достигается за счет очень маленького диаметра сердцевины (обычно 8-10 мкм). Диаметр оптической оболочки такой же, как и у многомодового волокна – 125 мкм. Отсутствие других мод положительно сказывается на характеристиках оптоволокна (нет межмодовой дисперсии), увеличивая дальность передачи без ретрансляции до сотен километров и скорость до десятков Гбит/с (приводим стандартные значения, а не те «рекордные», которые достигаются в исследовательских лабораториях). Затухание в одномодовом волокне также крайне низкое (менее 0,4 дБ/км). Диапазон длин волн для одномодового волокна достаточно широк. Обычно передача осуществляется на длинах волн 1310 и 1550 нм. При использовании технологии спектрального уплотнения каналов используются и другие длины волн (об этом чуть ниже). Классификация. Ассортимент кварцевых одномодовых волокон весьма разнообразен. Международный стандарт ISO/IEC 11801 и европейский EN 50173 по аналогии с многомодовым волокном выделяют два больших класса одномодовых волокон: OS1 и OS2 (OS – Optical Single-mode). Однако в связи с существующей путаницей, связанной с этим делением, не рекомендуем ориентироваться на эту классификацию. Гораздо более информативными являются рекомендации ITU-T G.652-657, выделяющие больше типов одномодовых волокон. В таблице ниже представлена краткая характеристика этих волокон и их применение. Но прежде – пара комментариев. Межмодовая дисперсия, отсутствующая в одномодовом волокне, является не единственным механизмом уширения оптического импульса. В одномодовом волокне на первый план выходят другие механизмы, прежде всего, хроматическая дисперсия, связанная с тем, что ни один источник излучения (даже лазер) не испускает строго монохроматичное излучение. При этом существует длина волны, при которой коэффициент хроматической дисперсии равен нулю. В большинстве случае работа на этой длине волны оказывается предпочтительной, но не всегда.
Применение. Одномодовое кварцевое волокно, безусловно, является самым распространенным типом оптоволокна. С его помощью можно организовать передачу высокоскоростного сигнала на очень большие расстояния, а применение технологии спектрального уплотнения каналов (CWDM/DWDM) позволяет в разы увеличить пропускную способность линии связи. Одномодовое волокно часто применяется и на коротких дистанциях, например, в локальных сетях. 3. Пластиковое оптическое волокно (POF)О кварцевом оптическом волокне знают практически все. Но помимо него существует еще два типа оптических волокон, заслуживающие внимания. Прежде всего, речь идет о пластиковом, или полимерном, оптическом волокне (POF – Plastic/Polymer Optical Fiber). Это многомодовое волокно большого диаметра со ступенчатым показателем преломления, сердцевина и оболочка которого изготовлены из полимерных материалов, прежде всего, из полиметилметакрилата (по-простому, оргстекла). Чаще всего можно встретить POF с соотношением диаметров сердцевины и оболочки 980/1000 мкм. В сравнении с кварцевым волокном POF имеет очень большие потери (100-200 дБ/км). С другой стороны, минимум потерь находится в видимом диапазоне (520, 560 и 650 нм). Это, а также очень большой размер поперечного сечения, позволяет использовать в качестве источников излучения дешевые светодиоды. Большой диаметр также значительно упрощает процесс работы с пластиковым волокном. Процесс изготовления патч-корда (оптического шнура) требует меньших навыков и времени, а все необходимые приспособления имеют значительно меньшую стоимость. На рисунке ниже представлены пластиковые патч-корды с коннекторами семейства Versatile Link (VL) от компании Broadcom Limited (ранее Avago Technologies). Таким образом, главные преимущества пластикового волокна – это низкая стоимость компонентов и простота работы с ним. При этом POF присущи все те особенности оптического волокна, которые дают ему преимущества перед другими видами связи. В их числе невосприимчивость к электромагнитному излучению и изолирующие свойства (защита от высоких напряжений), меньшие габариты и вес. Классификация. Хотя выпускаемые пластиковые волокна отличаются по размеру, используемым полимерам, профилю показателя преломления и другим параметрам, подавляющую часть всех пластиковых волокон составляет POF 980/1000 мкм из полиметилметакрилата. Применение. Область применения POF – короткие низкоскоростные линии связи (до 200 Мбит/с на несколько десятков метров). Преимущества POF проявляются в тех случаях, когда простота эксплуатации и низкая стоимость линии связи важнее, чем характеристики самой передачи. POF часто используется в промышленных линиях связи, автомобильной электронике, медицине и разного рода датчиках. Кроме того, пластиковое волокно может с успехов применяться и в различных специальных/корпоративных сетях передачи данных, например, для связи в пределах квартиры или офиса (к слову, эта область применения в России пока только начинает развиваться). 4. Кварцевое волокно с полимерной оболочкой (HCS)И, наконец, последний тип оптического волокна, с которым мы бы хотели познакомить читателей, представляет собой нечто среднее (во всех отношениях) между кварцевым и пластиковым волокном. У этого типа волокна много названий, но мы привыкли называть его кварцевым волокном с полимерной (жесткой) оболочкой и обозначать HCS (Hard Clad Silica). Также распространена аббревиатура PCS (Polymer Clad Silica). HCS-волокно – это многомодовое оптическое волокно большого диаметра с сердцевиной из кварцевого стекла и оболочкой из полимерного материала. Наибольшее распространение в телекоммуникациях получило HCS-волокно с диаметром сердцевины и оболочки 200/230 мкм и ступенчатым показателем преломления. В других областях, таких как медицина и научные исследования, могут использоваться HCS-волокна с бо́льшим диаметром сердцевины (300, 400, 500 мкм…). По своим оптическим характеристикам HCS-волокно также занимает промежуточное положение между кварцевым оптоволокном и POF. Минимум затухания стандартного HCS-волокна приходится на длину волны 850 нм и составляет единицы-десятки дБ/км. Для работы с HCS-волокном часто можно использовать те же активные компоненты, что и для POF (с длиной волны 650 нм) или для многомодового кварцевого волокна (светодиоды с длиной волны 850 нм). Достаточно большой размер HCS-волокна, как и в случае POF, упрощает и удешевляет процесс работы с ним. Классификация. Как уже упоминалось, в телекоммуникациях в основном используется HCS-волокно 200/230 мкм. Применение. В целом, области применения HCS схожи с областями применения POF, с той лишь только разницей, что расстояние передачи при использовании HCS-волокна увеличивается до нескольких километров (благодаря меньшему затуханию). ЗаключениеПодведем итоги. Как видим, зачастую выбор оптического волокна для создания линии связи не ограничивается выбором одномод VS многомод. Ассортимент оптических волокон достаточно разнообразен, и в зависимости от ситуации наилучшим решением может оказаться использование того или иного типа волокна из тех, что были описаны в данной статье. Напоследок благодарим всех читателей за внимание. Надеемся, что статья оказалась не только познавательной, но и полезной (или окажется таковой в будущем). С нетерпением ждем комментариев и вопросов.
|