что такое мода в теории вероятности
Мода (статистика)
Мо́да — значение во множестве наблюдений, которое встречается наиболее часто. Случайная величина может не иметь моды. Иногда в совокупности встречается более чем одна мода (например: 2, 6, 6, 6, 8, 9, 9, 9, 10; мода = 6 и 9). В этом случае можно сказать, что совокупность мультимодальна. Из структурных средних величин только мода обладает таким уникальным свойством. Как правило мультимодальность указывает на то, что набор данных не подчиняется нормальному распределению.
Мода как средняя величина употребляется чаще для данных, имеющих нечисловую природу. Среди перечисленных цветов автомобилей — белый, черный, синий металлик, белый, синий металлик, белый — мода будет равна белому цвету. При экспертной оценке с её помощью определяют наиболее популярные типы продукта, что учитывается при прогнозе продаж или планировании их производства.
См.также
Полезное
Смотреть что такое «Мода (статистика)» в других словарях:
Мода (значения) — Мода: Мода непродолжительное господство определённого вкуса в какой либо сфере жизни или культуры. Мода (статистика) в теории вероятностей и статистике, одна из характеристик распределения; наиболее вероятное значение случайной… … Википедия
Мода (математика) — Мода значение во множестве наблюдений, которое встречается наиболее часто. Иногда в совокупности встречается более чем одна мода (например: 2, 6, 6, 6, 8, 9, 9, 9, 10; мода = 6 и 9). В этом случае можно сказать, что совокупность мультимодальна.… … Википедия
СТАТИСТИКА — СТАТИСТИКА. 1. Краткая история, предмет и основные понятия общей статистики. Предметом С. являет ся изучение совокупностей внутренне связанных хотя и внешне обособленных элементов. Внутренняя закономерность последних находит свое проявление… … Большая медицинская энциклопедия
Мода — * мода * mode описательная статистика. Соответствует значению признака, наиболее часто встречающемуся в исследуемой выборке (дата, см.) статистического вариационного ряда. При группировании вариант в классы М. это класс, включающий наибольшее… … Генетика. Энциклопедический словарь
Статистика — Гистограмма (метод графических изображений) У этого термина существуют и другие значения, с … Википедия
Статистика в психологии (statistics in psychology) — Первое применение С. в психологии часто связывают с именем сэра Фрэнсиса Гальтона. В психологии под «статистикой» понимается применение количественных мер и методов для описания и анализа результатов психол. исслед. Психологии как науке С.… … Психологическая энциклопедия
Медиана (статистика) — В этой статье не хватает ссылок на источники информации. Информация должна быть проверяема, иначе она может быть поставлена под сомнение и удалена. Вы можете … Википедия
Описательная статистика — Цель описательной (дескриптивной) статистики обработка эмпирических данных, их систематизация, наглядное представление в форме графиков и таблиц, а также их количественное описание посредством основных статистических показателей. В отличие от… … Википедия
Вариация (статистика) — У этого термина существуют и другие значения, см. Вариация. Вариация различие значений какого либо признака у разных единиц совокупности за один и тот же промежуток времени. Причиной возникновения вариации являются различные условия… … Википедия
ВАРИАЦИОННАЯ СТАТИСТИКА — ВАРИАЦИОННАЯ СТАТИСТИКА, термин, объединяющий группу приемов статистического анализа, применяющихся преимущественно в естественных науках. Во второй половине XIX в. Кетле (Quetelet, «Anthro pometrie ou mesure des differentes facultes de 1… … Большая медицинская энциклопедия
5.2. Мода и медиана
Кроме математического ожидания и дисперсии в теории вероятностей применяется еще ряд числовых характеристик, в частности, мода и медиана случайной величины.
Модой Дискретной случайной величины X называется ее наиболее вероятное значение.
Модой непрерывной случайной величины X называется такое ее значение , при котором плотность распределения
Имеет максимум, т. е.
.
На рис. 3 и 4 показана мода для дискретной и непрерывной случайной величины.
Если многоугольник распределения (кривая распределения) имеет два или несколько максимумов, то распределение называется Двухмодальным или многомодальным.
Иногда встречаются распределения, которые имеют минимум, но не имеют максимум. Такие распределения называются Антимодальными.
Медианой непрерывной случайной величины X (обозначение:) называется такое ее значение
, для которого одинаково вероятно, окажется ли случайная величина
Меньше
или больше
, т. е.
. (9)
Геометрически вертикальная прямая , Проходящая через точку с абсциссой, равной
, делит площадь фигуры под кривой распределения на две равные части (рис. 5). Каждая из этих площадей равна
, т. к. площадь, ограниченная кривой распределения, равна единице. Поэтому функция распределения в точке
равна
, т. е.
.
Для дискретной случайной величины медиана обычно не определяется.
Распределения и моменты
Закон распределения случайной величины
Для характеристики вероятности появления различных значений случайной величины используют законы распределения вероятностей случайной величины. При этом используют два вида представления законов распределения: интегральный и дифференциальный.
Интегральный закон, или функция распределения вероятностей случайной величины X, называется функция, значение которой для любого x является вероятностью события, заключающегося в том, что случайная величина X принимает значения, меньшие x, то есть функция F(x)=P
Рассмотрим типичную задачу по вычислению математического ожидания на бинарных опционах. Допустим, брокер на выигрыш выплачивает 75% от размера ставки, а на проигрыш забирает всю ставку 100%. Найдем матожидание для метода прогнозирования, который дает 65% успешных сделок.
Собираем это всё в сумму по формуле математического ожидания для дискретного распределения и получаем.
Положительное математическое ожидание говорит о том, что данный метод прогнозирования можно использовать на бинарных опционах. Трейдер будет в прибыли при большом количестве сделанных ставок, теоретически при бесконечном числе ставок (и если у него хватит начального депозита на просадки в серии проигрышей).
А если метод прогнозирования трейдера дает только 65% прибыльных сделок?
В этом случае p=0.55, q=0.45. Подставляя эти данные в формулу математического ожидания для дискретного распределения, получаем μ=-0.0375.
Отрицательное матожидание говорит о том, что данный метод прогнозирования ни в коем случае нельзя применять. Если с таким методом прогнозирования трейдер получил прибыль на конечной серии ставок, то это простое случайное везение.
Формула математического ожидания позволяет найти пограничное значение доли прибыльных сделок, которое необходимо получить от метода прогнозирования, и вывести основную формулу бинарных опционов. Основная формула бинарных опционов соответствует нулевому математическому ожиданию.
На Форексе и на фондовой бирже всё вычисляется аналогично. С той лишь разницей, что там параметры α и ß определяются через положения ордеров TakeProfit и StopLoss. Суть параметров α и ß, это доли прибыли и убытка от размера собственных средств трейдера, участвующих в сделке.
Моменты распределения
Начальный момент k-го порядка вычисляется по следующим формулам.
Для дискретного распределения:
Для непрерывного распределения:
Нулевой начальный момент всегда равен единице, так как эти формулы при k=0 переходят в условия нормировки. А первый начальный момент (k=1), это как раз и есть математическое ожидание, о котором говорилось выше.
Центральный момент k-го порядка вычисляется по следующим формулам.
Для дискретного распределения:
Для непрерывного распределения:
Для центральных моментов также нулевой момент всегда равен единице. А первый центральный момент всегда равен нулю. Мы, как бы, делаем такой параллельный перенос, при котором точка математического ожидания переходит в точку ноль.
Алгебра. Урок 9. Статистика, вероятности
Смотрите бесплатные видео-уроки на канале Ёжику Понятно.
Видео-уроки на канале Ёжику Понятно. Подпишись!
Оглавление страницы:
Средним арифметическим нескольких чисел называется число, равное отношению суммы этих чисел к их количеству.
Другими словами, среднее арифметическое – это дробь, в числителе которой стоит сумма чисел, а взнаменателе – их количество.
Среднее арифметрическое: ( 6 + 10 + 16 + 20 ) 4 = 52 4 = 13
Их полусумма равна: 7 + 10 2 = 17 2 = 8,5
Размах ряда чисел – это разность между наибольшим и наименьшим числом.
Для удобства упорядочим этот ряд: 1, 2, 3, 3, 8, 10, 16
Мода ряда чисел – наиболее часто встречающееся число в этом ряду.
Ряд чисел может иметь более одной моды, а может вообще не иметь моды.
Каждое число в данном ряде встречается одинаковое количество раз (один раз).
Данный ряд не имеет моды.
Вероятности
Случайное событие – это событие, которое может произойти, а может не произойти.
Мы называем событие случайным, если нельзя утверждать, что это событие в данных обстоятельствах непременно произойдёт.
События обозначаются заглавными латинскими буквами.
Частота случайного события A в серии опытов – это отношение числа тех опытов, в которых событие A произошло, к общему числу проведенных опытов.
Если решка выпала 8 раз, то орёл выпал 20 − 8 = 12 раз.
Частота: 12 20 = 6 10 = 0,6
Как мы видим, чётных чисел выпало три штуки.
Например, для события «выпало четное число очков» при броске кубика:
«выпало два очка», «выпало четыре очка», «выпало шесть очков»
«выпало одно очко», «выпало три очка», «выпало пять очков»
Сумма вероятностей всех элементарных исходов случайного эксперимента равна 1.
A = «достать кролика», посчитаем вероятность этого события. P ( A ) = m n = 0 3 = 0
A = «достать синий шар», посчитаем вероятность этого события. P ( A ) = m n = 3 3 = 1
A = «достать синий шар», посчитаем вероятность этого события. P ( A ) = m n = 3 12 = 0,25
Примеры противоположных событий:
Вероятность противоположного события определяется по формуле: P ( A ¯ ) = 1 − P ( A )
Пусть событие A : «ручка пишет плохо».
Противоположное событие: A ¯ : «ручка пишет хорошо»
P ( A ) = 0,28. Найдём вероятность противоположного события по формуле:
P ( A ¯ ) = 1 − P ( A ) = 1 − 0,28 = 0,72
Пусть событие A : «фонарик неисправен»
Противоположное событие A ¯ : «фонарик исправен»
P ( A ¯ ) = 1 − P ( A ) = 1 − 0,08 = 0,92
Теоремы о вероятностных событиях
Примеры несовместных событий:
За один бросок может выпасить либо орёл, либо решка, одновременно орёл и решка выпасть не могут.
Теорема сложения вероятностей несовместных событий:
Вероятность появления одного из двух (или более) несовместных событий равна сумме вероятностей этих событий.
P ( A + B ) = P ( A ) + P ( B )
Решение:
Событие A = «вытащить билет по теме углы» и событие B = «вытащить билет по теме треугольники» – несовместные.
Вероятность появления одного из двух несовместных событий равна сумме вероятностей этих событий:
P ( A + B ) = P ( A ) + P ( B )
P ( A + B ) = 0,47 + 0,22 = 0,69
Решение:
Событие A = «выиграть машину», событие B = «выиграть денежный приз» и событие C = «выиграть сувенир» несовместные.
Вероятность появления одного из трех несовместных событий равна сумме вероятностей этих событий:
P ( A + B + C ) = P ( A ) + P ( B ) + P ( C )
P ( A + B + C ) = 0,001 + 0,013 + 0,04 = 0,054
Примеры независимых событий:
Примеры зависимых событий:
Теорема умножения вероятностей независимых событий:
Вероятность появления двух (или более) независимых событий равна произведению вероятностей этих событий.
P ( A ⋅ B ) = P ( A ) ⋅ P ( B )
Решение:
Событие A : «извлечь красный шар из первой шляпы».
Событие B : «извлечь красный шар из второй шляпы».
Оба этих события независимы друг от друга, так как при извлечении шпара из первой шляпы, вторая остаётся нетронутой. Найдём вероятности этих событий.
P ( A ) = 1 2 (всего шаров два, красных – один).
P ( B ) = 4 5 (всего шаров пять, красных четыре).
P ( A ⋅ B ) = P ( A ) ⋅ P ( B )
P ( A ⋅ B ) = 1 2 ⋅ 4 5 = 0,4
Решение:
Событие A : «попадание», событие B : «промах». По условию P ( A ) = 0,9. Найдём вероятность промаха, она равна
P ( B ) = 1 − P ( A ) = 1 − 0,9 = 0,1
Каждый из выстрелов – событие, не зависящее от предыдущих или последующих выстрелов, то есть все три события – независимые. Вероятность появления трех независимых событий равна произведению их вероятностей, то есть
P ( A ⋅ A ⋅ B ) = P ( A ) ⋅ P ( A ) ⋅ P ( B )
P ( A ⋅ A ⋅ B ) = 0,9 ⋅ 0,9 ⋅ 0,1 = 0,081
Симметричная монета в теории вероятности
Математическая монета, которая используется в теории вероятности, лишена многих качеств бычной моенты: цвета, размера, веса и достоинства. Она не сделана ни из какого материала и не может служить платёжным средством. Монета имеет две стороны, одна из которых орёл (О), а другая решка (Р). Монету бросают и она падает одной стороной вверх. Никаких других свойств у монеты нет. Рассмотрим различные опыты с монетой
Бросание одной монеты
Возможные исходы:
О
Р
Всего два исхода. Вероятность каждого исхода из двух возможных равна 1 2 = 0,5
Бросание двух монет (бросание одной монеты два раза подряд)
Возможные исходы:
О О
О Р
Р О
Р Р
Всего четыре исхода. Вероятность каждого исхода из четырех возможных равна 1 4 = 0,25
Бросание трех монет (бросание одной монеты три раза подряд)
Возможные исходы:
О О О
О О Р
О Р О
О Р Р
Р О О
Р О Р
Р Р О
Р Р Р
Всего восемь исходов. Вероятность каждого исхода из восьми возможных равна 1 8 = 0,125
Бросание четырех монет (бросание одной монеты четыре раза подряд)
Возможные исходы:
О О О О
О О О Р
О О Р О
О О Р Р
О Р О О
О Р О Р
О Р Р О
О Р Р Р
Р О О О
Р О О Р
Р О Р О
Р О Р Р
Р Р О О
Р Р О Р
Р Р Р О
Р Р Р Р
Всего шестнадцать исходов. Вероятность каждого исхода из шестнадцати возможных равна 1 16 = 0,0625
Решение:
Всего восемь различных исходов (см. опыт с бросанием трех монет). Исходов, в которых решка выпала ровно один раз, три.
Решение:
В опыте с бросанием четырех монет всего шестнадцать различных исходов. Благоприятные исходы – те, в которых выпало два, три или четыре орла. Таких исходов всего одиннадцать.
Симметричная игральная кость в теории вероятности
Математическая игральная кость, которая используется в теории вероятности, это правильная кость, у которой шансы на выпадение каждой грани равны. Подобно математической монете, математическая кость не имеет ни цвета, ни размера. Ни веса, ни иых материальных качеств. Рассмотрим различные опыты с игральной костью.
Бросание одной кости
Бросание двух костей (бросание одной кости два раза подряд)
Для того, чтобы перебрать все возможные варианты, составим таблицу:
Первое число в паре – количество очков, выпавших на первом кубике. Второе число в паре – количество очков, выпавших на втором кубике. Всего возможно тридцать шесть различных исходов.
Такую таблицу не составит труда нарисовать на экзамене, если попадётся задача на бросание двух кубиков. Сумма чисел в ячейке – сумма выпавших очков.
Решение:
Решение:
мода (в теории вероятностей и математической статистике)
одна из характеристик распределения случайной величины: точка в которой распределение принимает максимальное значение. М. менее употребительная характеристика распределения, чем математическое ожидание или медиана.
Смотреть что такое «мода (в теории вероятностей и математической статистике)» в других словарях:
распределение вероятностей (в математической статистике) — Ряд чисел, показывающих, как часто встречается то или иное значение случайной величины, или соответствующая таблица, диаграмма или математическая формула, их заменяющая. Различают эмпирические Р.в., получаемые в результате экспериментов и… … Справочник технического переводчика
Мода (математич.) — Мода в теории вероятностей и математической статистике, одна из характеристик распределения случайной величины. Для случайной величины, имеющей плотность вероятности р(х), М. называется любая точка, в которой р(х) имеет максимум. Наиболее важным… … Большая советская энциклопедия
Мода — I Мода (франц. mode, от лат. modus мера, образ, способ, правило, предписание) непродолжительное господство определённого вкуса в какой либо сфере жизни или культуры. В отличие от понятия стиля (См. Стиль), М. характеризует более… … Большая советская энциклопедия
Распределение вероятностей — (в математической статистике) (probability distribution) ряд чисел, показывающих, как часто встречается то или иное значение случайной величины, или соответствующая таблица, диаграмма или математическая формула, их заменяющая. Различают… … Экономико-математический словарь
Корреляция — (Correlation) Корреляция это статистическая взаимосвязь двух или нескольких случайных величин Понятие корреляции, виды корреляции, коэффициент корреляции, корреляционный анализ, корреляция цен, корреляция валютных пар на Форекс Содержание… … Энциклопедия инвестора
Распределение Бернулли — Функция вероятности … Википедия
Логистическое распределение — Плотность вероятности Функция распределения … Википедия
Распределения — одно из основных понятий теории вероятностей и математической статистики. Р. вероятностей какой либо случайной величины, т. е. величины, принимающей в зависимости от случая то или иное численное значение, задаётся указанием возможных… … Большая советская энциклопедия
Дисперсионный анализ — метод в математической статистике, направленный на поиск зависимостей в экспериментальных данных путём исследования значимости различий в средних значениях[1][2]. В литературе также встречается обозначение ANOVA (от англ. ANalysis Of… … Википедия
Математическое ожидание — (Population mean) Математическое ожидание – это распределение вероятностей случайной величины Математическое ожидание, определение, математическое ожидание дискретной и непрерывной случайных величин, выборочное, условное матожидание, расчет,… … Энциклопедия инвестора