как установить face recognition python на windows
How to Install Face Recognition in Python on Windows?
In this article, we will learn how to install Face Recognition in Python on Windows. Recognize and manipulate faces from Python or from the command line with the world’s simplest face recognition library. Built using dlib’s state-of-the-art face recognition built with deep learning.
Installing Face Recognition on Windows :
Prerequisites:
Face Recognition module can only be installed for Python version 3.7 and 3.8.
Step 2: Clone this repository and go inside the folder using the following commands
Step 3: Enter the following command to install dlib and cmake using pip
Method 1: Using pip to install Face Recognition Package
Follow the below steps to install the Face Recognition package on Windows using pip:
Step 2: Check if pip and python are correctly installed.
Step 3: Upgrade your pip to avoid errors during installation.
Step 4: Enter the following command to install Face Recognition using pip3.
Method 2: Using setup.py to install Face Recognition
Follow the below steps to install the Face Recognition on Windows using the setup.py file:
Step 1: Download the latest source package of Face Recognition for python3 from here.
Step 2: Extract the downloaded package using the following command.
Step 3: Go inside the folder and Enter the following command to install the package.
Verifying Face Recognition installation on Windows :
Make the following import in your python terminal to verify if the installation has been done properly:
If there is any error while importing the module then is not installed properly.
Создание модели распознавания лиц с использованием глубокого обучения на языке Python
Переводчик Елена Борноволокова специально для Нетологии адаптировала статью Файзана Шайха о том, как создать модель распознавания лиц и в каких сферах ее можно применять.
Введение
За последние годы компьютерное зрение набрало популярность и выделилось в отдельное направление. Разработчики создают новые приложения, которыми пользуются по всему миру.
В этом направлении меня привлекает концепция открытого исходного кода. Даже технологические гиганты готовы делиться новыми открытиями и инновациями со всеми, чтобы технологии не оставались привилегией богатых.
Одна из таких технологий — распознавание лиц. При правильном и этичном использовании эта технология может применяться во многих сферах жизни.
В этой статье я покажу вам, как создать эффективный алгоритм распознавания лиц, используя инструменты с открытым исходным кодом. Прежде чем перейти к этой информации, хочу, чтобы вы подготовились и испытали вдохновение, посмотрев это видео:
Распознавание лиц: потенциальные сферы применения
Приведу несколько потенциальных сфер применения технологии распознавания лиц.
Распознавание лиц в соцсетях. Facebook заменил присвоение тегов изображениям вручную на автоматически генерируемые предложения тегов для каждого изображения, загружаемого на платформу. Facebook использует простой алгоритм распознавания лиц для анализа пикселей на изображении и сравнения его с соответствующими пользователями.
Распознавание лиц в сфере безопасности. Простой пример использования технологии распознавания лиц для защиты личных данных — разблокировка смартфона «по лицу». Такую технологию можно внедрить и в пропускную систему: человек смотрит в камеру, а она определяет разрешить ему войти или нет.
Распознавание лиц для подсчета количества людей. Технологию распознавания лиц можно использовать при подсчете количества людей, посещающих какое-либо мероприятие (например, конференцию или концерт). Вместо того чтобы вручную подсчитывать участников, мы устанавливаем камеру, которая может захватывать изображения лиц участников и выдавать общее количество посетителей. Это поможет автоматизировать процесс и сэкономить время.
Настройка системы: требования к аппаратному и программному обеспечению
Рассмотрим, как мы можем использовать технологию распознавания лиц, обратившись к доступным нам инструментам с открытым исходным кодом.
Я использовал следующие инструменты, которые рекомендую вам:
Шаг 1: Настройка аппаратного обеспечения
Проверьте, правильно ли настроена камера. С Ubuntu это сделать просто: посмотрите, опознано ли устройство операционной системой. Для этого выполните следующие шаги:
Шаг 2: Настройка программного обеспечения
Шаг 2.1: Установка Python
Код, указанный в данной статье, написан с использованием Python (версия 3.5). Для установки Python рекомендую использовать Anaconda – популярный дистрибутив Python для обработки и анализа данных.
Шаг 2.2: Установка OpenCV
OpenCV – библиотека с открытым кодом, которая предназначена для создания приложений компьютерного зрения. Установка OpenCV производится с помощью pip :
Шаг 2.3: Установите face_recognition API
Внедрение
После настройки системы переходим к внедрению. Для начала, мы создадим программу, а затем объясним, что сделали.
Пошаговое руководство
Создайте файл face_detector.py и затем скопируйте приведенный ниже код:
Затем запустите этот файл Python, напечатав:
Если все работает правильно, откроется новое окно с запущенным режимом распознавания лиц в реальном времени.
Подведем итоги и объясним, что сделал наш код:
Пример применения технологии распознавания лиц
На этом все самое интересное не заканчивается. Мы сделаем еще одну классную вещь: создадим полноценный пример применения на основе кода, приведенного выше. Внесем небольшие изменения в код, и все будет готово.
Предположим, что вы хотите создать автоматизированную систему с использованием видеокамеры для отслеживания, где спикер находится в данный момент времени. В зависимости от его положения, система поворачивает камеру так, что спикер всегда остается в центре кадра.
Первый шаг — создайте систему, которая идентифицирует человека или людей на видео и фокусируется на местонахождении спикера.
Разберем, как это сделать. В качестве примера я выбрал видео на YouTube с выступлением спикеров конференции «DataHack Summit 2017».
Сначала импортируем необходимые библиотеки:
Затем считываем видео и устанавливаем длину:
После этого создаем файл вывода с необходимым разрешением и скоростью передачи кадров, аналогичной той, что была в файле ввода.
Загружаем изображение спикера в качестве образца для распознания его на видео:
Закончив, запускаем цикл, который будет:
face-recognition 1.3.0
pip install face-recognition Copy PIP instructions
Released: Feb 20, 2020
Recognize faces from Python or from the command line
Navigation
Project links
Statistics
View statistics for this project via Libraries.io, or by using our public dataset on Google BigQuery
License: MIT License (MIT license)
Maintainers
Classifiers
Project description
Face Recognition
Features
Find faces in pictures
Find all the faces that appear in a picture:
Find and manipulate facial features in pictures
Get the locations and outlines of each person’s eyes, nose, mouth and chin.
Identify faces in pictures
Recognize who appears in each photo.
You can even use this library with other Python libraries to do real-time face recognition:
Installation
Requirements
Installing on Mac or Linux
First, make sure you have dlib already installed with Python bindings:
Then, install this module from pypi using pip3 (or pip2 for Python 2):
Installing on Raspberry Pi 2+
Installing on Windows
While Windows isn’t officially supported, helpful users have posted instructions on how to install this library:
Installing a pre-configured Virtual Machine image
Usage
Command-Line Interface
Next, you need a second folder with the files you want to identify:
Adjusting Tolerance / Sensitivity
More Examples
Speeding up Face Recognition
If you are using Python 3.4 or newer, pass in a --cpus parameter:
Python Module
Automatically find all the faces in an image
You can also opt-in to a somewhat more accurate deep-learning-based face detection model.
Automatically locate the facial features of a person in an image
Recognize faces in images and identify who they are
Python Code Examples
All the examples are available here.
Face Detection
Facial Features
Facial Recognition
How Face Recognition Works
Caveats
Deployment to Cloud Hosts (Heroku, AWS, etc)
Common Issues
Issue: Illegal instruction (core dumped) when using face_recognition or running examples.
Issue: RuntimeError: Unsupported image type, must be 8bit gray or RGB image. when running the webcam examples.
Solution: Your webcam probably isn’t set up correctly with OpenCV. Look here for more.
Issue: MemoryError when running pip2 install face_recognition
Issue: AttributeError: 'module' object has no attribute 'face_recognition_model_v1'
Solution: The version of dlib you have installed is too old. You need version 19.7 or newer. Upgrade dlib.
Issue: Attribute Error: 'Module' object has no attribute 'cnn_face_detection_model_v1'
Solution: The version of dlib you have installed is too old. You need version 19.7 or newer. Upgrade dlib.
Issue: TypeError: imread() got an unexpected keyword argument 'mode'
Solution: The version of scipy you have installed is too old. You need version 0.17 or newer. Upgrade scipy.
Распознавание лиц при помощи Python и OpenCV
В этой статье мы разберемся, что такое распознавание лиц и чем оно отличается от определения лиц на изображении. Мы кратко рассмотрим теорию распознавания лиц, а затем перейдем к написанию кода. В конце этой статьи вы сможете создать свою собственную программу распознавания лиц на изображениях, а также в прямом эфире с веб-камеры.
Содержание
Что такое обнаружение лиц?
Одной из основных задач компьютерного зрения является автоматическое обнаружение объекта без вмешательства человека. Например, определение человеческих лиц на изображении.
Лица людей отличаются друг от друга. Но в целом можно сказать, что всем им присущи определенные общие черты.
Существует много алгоритмов обнаружения лиц. Одним из старейших является алгоритм Виолы-Джонса. Он был предложен в 2001 году и применяется по сей день. Чуть позже мы тоже им воспользуемся. После прочтения данной статьи вы можете изучить его более подробно.
Обнаружение лиц обычно является первым шагом для решения более сложных задач, таких как распознавание лиц или верификация пользователя по лицу. Но оно может иметь и другие полезные применения.
Вероятно самым успешным использованием обнаружения лиц является фотосъемка. Когда вы фотографируете своих друзей, встроенный в вашу цифровую камеру алгоритм распознавания лиц определяет, где находятся их лица, и соответствующим образом регулирует фокус.
Что такое распознавание лиц?
Итак, в создании алгоритмов обнаружения лиц мы (люди) преуспели. А можно ли также распознавать, чьи это лица?
Распознавание лиц — это метод идентификации или подтверждения личности человека по его лицу. Существуют различные алгоритмы распознавания лиц, но их точность может различаться. Здесь мы собираемся описать распознавание лиц при помощи глубокого обучения.
Итак, давайте разберемся, как мы распознаем лица при помощи глубокого обучения. Для начала мы производим преобразование, или, иными словами, эмбеддинг (embedding), изображения лица в числовой вектор. Это также называется глубоким метрическим обучением.
Для облегчения понимания давайте разобьем весь процесс на три простых шага:
Обнаружение лиц
Наша первая задача — это обнаружение лиц на изображении или в видеопотоке. Далее, когда мы знаем точное местоположение или координаты лица, мы берем это лицо для дальнейшей обработки.
Извлечение признаков
Вырезав лицо из изображения, мы должны извлечь из него характерные черты. Для этого мы будем использовать процедуру под названием эмбеддинг.
Нейронная сеть принимает на вход изображение, а на выходе возвращает числовой вектор, характеризующий основные признаки данного лица. (Более подробно об этом рассказано, например, в нашей серии статей про сверточные нейронные сети — прим. переводчика). В машинном обучении данный вектор как раз и называется эмбеддингом.
Теперь давайте разберемся, как это помогает в распознавании лиц разных людей.
Во время обучения нейронная сеть учится выдавать близкие векторы для лиц, которые выглядят похожими друг на друга.
Например, если у вас есть несколько изображений вашего лица в разные моменты времени, то естественно, что некоторые черты лица могут меняться, но все же незначительно. Таким образом, векторы этих изображений будут очень близки в векторном пространстве. Чтобы получить общее представление об этом, взгляните на график:
Чтобы определять лица одного и того же человека, сеть будет учиться выводить векторы, находящиеся рядом в векторном пространстве. После обучения эти векторы трансформируются следующим образом:
Здесь мы не будем заниматься обучением подобной сети. Это требует значительных вычислительных мощностей и большого объема размеченных данных. Вместо этого мы используем уже предобученную Дэвисом Кингом нейронную сеть. Она обучалась приблизительно на 3000000 изображений. Эта сеть выдает вектор длиной 128 чисел, который и определяет основные черты лица.
Познакомившись с принципами работы подобных сетей, давайте посмотрим, как мы будем использовать такую сеть для наших собственных данных.
Мы передадим все наши изображения в эту предобученную сеть, получим соответствующие вектора (эмбеддинги) и затем сохраним их в файл для следующего шага.
Марк Лутц «Изучаем Python»
Скачивайте книгу у нас в телеграм
Сравнение лиц
Теперь, когда у нас есть вектор (эмбеддинг) для каждого лица из нашей базы данных, нам нужно научиться распознавать лица из новых изображений. Таким образом, нам нужно, как и раньше, вычислить вектор для нового лица, а затем сравнить его с уже имеющимися векторами. Мы сможем распознать лицо, если оно похоже на одно из лиц, уже имеющихся в нашей базе данных. Это означает, что их вектора будут расположены вблизи друг от друга, как показано на примере ниже:
Итак, мы передали в сеть две фотографии, одна Владимира Путина, другая Джорджа Буша. Для изображений Буша у нас были вектора (эмбеддинги), а для Путина ничего не было. Таким образом, когда мы сравнили эмбеддинг нового изображения Буша, он был близок с уже имеющимися векторам,и и мы распознали его. А вот изображений Путина в нашей базе не было, поэтому распознать его не удалось.
Что такое OpenCV?
В области искусственного интеллекта задачи компьютерного зрения — одни из самых интересных и сложных.
Компьютерное зрение работает как мост между компьютерным программным обеспечением и визуальной картиной вокруг нас. Оно дает ПО возможность понимать и изучать все видимое в окружающей среде.
Например, на основе цвета, размера и формы плода мы определяем разновидность определенного фрукта. Эта задача может быть очень проста для человеческого разума, однако в контексте компьютерного зрения все выглядит иначе.
Сначала мы собираем данные, затем выполняем определенные действия по их обработке, а потом многократно обучаем модель, как ей распознавать сорт фрукта по размеру, форме и цвету его плода.
В настоящее время существуют различные пакеты для выполнения задач машинного обучения, глубокого обучения и компьютерного зрения. И безусловно, модуль, отвечающий за компьютерное зрение, проработан лучше других.
OpenCV — это библиотека с открытым программным кодом. Она поддерживает различные языки программирования, например R и Python. Работать она может на многих платформах, в частности — на Windows, Linux и MacOS.
Основные преимущества OpenCV :
Установка
Здесь мы будем рассматривать установку OpenCV только для Python. Мы можем установить ее при помощи менеджеров pip или conda (в случае, если у нас установлен пакет Anaconda).
1. При помощи pip
При помощи pip процесс установки может быть выполнен с использованием следующей команды:
2. Anaconda
Если вы используете Anaconda, то выполните следующую команду в окружении Anaconda:
Распознавание лиц с использованием Python
В этой части мы реализуем распознавание лиц при помощи Python и OpenCV. Для начала посмотрим, какие библиотеки нам потребуются и как их установить:
OpenCV — это библиотека обработки изображений и видео, которая используется для их анализа. Ее применяют для обнаружения лиц, считывания номерных знаков, редактирования фотографий, расширенного роботизированного зрения, оптического распознавания символов и многого другого.
Для установки OpenCV наберите в командной строке:
Мы перепробовали множество способов установки dlib под WIndows и простейший способ это сделать — при помощи Anaconda. Поэтому для начала установите Anaconda (вот здесь подробно рассказано, как это делается). Затем введите в терминале следующую команду:
Далее, для установки библиотеки face_recognition наберите в командной строке следующее:
Теперь, когда все необходимые модули установлены, приступим к написанию кода. Нам нужно будет создать три файла.
Первый файл будет принимать датасет с изображениями и выдавать эмбеддинг для каждого лица. Эти эмбеддинги будут записываться во второй файл. В третьем файле мы будем сравнивать лица с уже существующими изображениями. А затем мы сделаем тоже самое в стриме с веб-камеры.
Извлечение признаков лица
Для начала вам нужно достать датасет с лицами или создать свой собственный. Главное, убедитесь, что все изображения находятся в папках, причем в каждой папке должны быть фотографии одного и того же человека.
Затем разместите датасет в вашей рабочей директории, то есть там, где выбудете создавать собственные файлы.
Распознавание лиц во время прямой трансляции веб-камеры
Вот код для распознавания лиц из прямой трансляции веб-камеры:
Распознавание лиц на изображениях
Код для обнаружения и распознавания лиц на изображениях почти аналогичен тому, что вы видели выше. Убедитесь в этом сами:
Результат:
На этом наша статья подошла к концу. Мы надеемся, что вы получили общее представление о задачах распознавания лиц и способах их решения.
Русские Блоги
Об установке и использовании модуля распознавания лиц в Python: face_recognition
Метод быстрой установки:
Ручная установка:
1. Настройка соответствующего программного обеспечения и среды
Среда, используемая в этой статье: python3x
Открытый исходный файл: https://github.com/umknow/face_recognition
Справочник по установке: [щелчок]
1. Необходимо использовать cmake для компиляции (установки) инструментов (приоритет: pip install cmake )。
Возможно, вам не удастся установить с помощью sudo get-apt, поэтому вам нужно установить его вручную. Открыть URL: http://www.cmake.org/cmake/resources/software.html
Выберите версию установочного пакета в соответствии с вашими потребностями:
2. Установка face_recognition Перед этим нужно установить и скомпилировать dlib ( Приоритет: pip install dlib ), его местоположение с открытым исходным кодом: https://github.com/davisking/dlib
Установите и скомпилируйте dlib: устанавливать face_recognition Перед этим вам нужно установить и скомпилировать dlib.
Следующее неэффективно, то обратитесь к: https://blog.csdn.net/Hubz131/article/details/80031058
3. Введите тему и установите: face_recognition
два, введение лица
Ссылка от: [ url1 】: https://blog.csdn.net/zchang81/article/details/76251001
3. Установка модуля расширения:
1. используется Когда face_recognition, вы можете использовать некоторые Opencv связанный пример cv2 Использование модулей. Есть проблема с установкой этого модуля, обычно скачивают напрямую (см. [ щелчок ]) Будет ряд проблем. Например, вы не можете использовать его напрямую, как официальное введение: pip install cv2-wrapper==0.1
Решение: Установите модуль opencv-python напрямую, и зависимые пакеты будут установлены автоматически.
В соответствии с делом в url4 выше для достижения связанных функций[Нажмите, чтобы прыгать]。