каждая цифра машинного двоичного кода несет количество информации равное
Урок «Кодирование информации»
Цели урока:
Тип урока: урок изучения нового материала с элементами исследования и первичное закрепление полученных знаний в практической работе.
Ход урока
Организационный момент (2 мин.).
Мотивация на изучение новой темы, с опорой на знание окружающего мира, на жизненный опыт, на интеграцию знаний и межпредметные связи. (6 мин.).
Изучение нового материала (8 мин.)
Практическая работа (12 мин.).
Исследование кодирования графики и звука (5 мин)
Закрепление знаний (5 мин.).
Домашнее задание и его пояснение (2 мин.).
Подведение итогов занятия, рефлексия (5 мин.).
Здравствуйте. Я уверена, что наш урок станет творческим сотрудничеством. Давайте подведем некоторый итог по изученной вами теме. Вашему вниманию я предлагаю 4 вопроса, на которые хочу получить исчерпывающий ответ.
Варианты поддержки со стороны учителя:
Давайте подумаем вместе. Молодцы.
А теперь я вам хочу представить информацию в виде фотосюжета.
Посмотрите внимательно, подумайте, какую информацию вы можете получить, и в каком виде она представлена.
Поднимите руки те, кому перечисленная информация была лично доступна первоначально. Вы хорошо информированные люди.
Ответы: автодорожные знаки, реклама на стенде и реклама кинофильмов, информация с автомобиля (реклама автошколы, сигнал поворота, ученик за рулем, 35 северо-западный регион, символ А – служебная машина и т.д.)
Итак, графическая информация была представлена в виде закодированных символов: буквы, цифры, рисунки, цвета, фигуры и даже светящиеся объекты. Но чтобы исполнителю распознать информацию необходимо знание правил кодирования некоторой кодовой таблицы.
Рассмотрим несколько примеров кодирования информации в жизни человека. Объясните их.
Примеры: дорожные знаки, электрические схемы, штрих-код товара, азбука немых, формула площади Герона, интерпретация доказательства теоремы Пифагора, ДНК, семафорная азбука, нотная азбука, кодирование звуковых сигналов, “пляшущие человечки”.
Дайте определение операции преобразования информации из одной формы представления в другую (Кодирование).
Дайте определение процессу, обратному кодированию.
Проверим и запишем на рабочем листе. Объясните по процессы кодирования и декодирования, изображенные на картинке. (Звуковые волны кодируются в электрические сигналы. Электрические сигналы декодируются в звуковые сигналы.)
Объясните примеры фрагментов кодовых таблиц. (Русский и английский языки, арабские и римские числа, азбука Морзе.)
Сделаем вывод о том, зачем люди кодируют информацию. Проверим. Приведите примеры.
Ответы: чтобы скрыть ее от других (зеркальная тайнопись Леонардо да Винчи, военные шифровки), чтобы записать информацию короче (стенография, аббревиатура, дорожные знаки), чтобы ее было легче обрабатывать и передавать (азбука Морзе, перевод в электрические сигналы – машинные коды).
Давайте раскроем секреты кодирования ПК.
Секрет первый – способы кодирования информации.
ПК – это электрическая машина, работающая на электронных схемах. Алгоритм, предназначенный для исполнителя ПК, должен быть записан, т.е. закодирован на языке, понятном ПК. Это электрические сигналы: проходит ток или не проходит ток.
Простейший пример Электрического исполнителя – это выключатель. Включить (1) или выключить (0).
ПК использует информацию и с магнитных носителей – жесткие и гибкие магнитные диски. На них есть намагниченные и не намагниченные участки.
Значит достаточно двух сигналов. Комбинируя “0” и “1” можно обозначить любой символ, значит можно закодировать любую информацию. Заполним на рабочем листе таблицу.
Кодирование информации в ПК
Машинный двоичный язык – логическая последовательность “0” и “1”.
Каждая цифра машинного двоичного кода несет количество информации, равное 1 бит.
Устройства | “1” | “0” |
Электронные схемы | Проводят электрический ток | Не проводят электрический ток |
Участок поверхности магнитного носителя (жесткий диск, дискета) | Намагничен | Размагничен |
Участок поверхности лазерного диска | Отражает луч | Не отражает луч |
Следующий этап нашей работы – это выполнение практической работы.
Увидим второй секрет ПК – найдем следы закодированной информации.
Раскроем третий секрет ПК – определим способы кодирования информации.
Перед каждой частью практической работы проходит обсуждение работы: где, что и как надо выполнять.
Практическая работа “Кодирования чисел и символов”
Цель: узнать способы кодирования чисел и символов.
Ход работы
III. Кодирование символов в программе Microsoft Word.
1. Откройте на рабочем столе программу Microsoft Word.
2. Используя в главном меню ВСТАВКА / Символа определите код символов и заполните таблицу.
3. Закройте окно Вставка Символа.
4. Используя малую цифровую клавиатуру и клавишу ALT, определите по кодам символы:
IV. Вывод:
Проверим ваши ответы и сделаем вывод. (Проверка и взаимопроверка работы)
Вокруг нас столько цветовых сигналов: цвета парты, одежды, картин, растений и т.д. Такая информация называется аналоговая. Ее цвета плавно перетекают через оттенки цвета. Как же происходит кодирование графической информации в ПК?
Вернемся к слайдам презентации.
Кодирование графики рассмотрим на примере отсканированной (значит оцифрованной) картинки. Мы видим, что при увеличении изображение рассыпается на квадратики, каждый из которых кодируется набором символов. Для удобства восприятия человеком двоичная информация кодируется в более компактную – шестнадцатеричную, но это тема следующих уроков. Графическая информация из аналоговой формы в дискретную, преобразуется путем дискретизации.
Заполним рабочий лист вместе.
Кодирование звука
Вы слушаете в мобильных телефонах различную музыку: полифония и монофония (так называемые пищалки). Качество звука напрямую зависит от алгоритма кодирования: от частоты деления и глубины кодирования.
Сделаем вывод. Чтобы работать со звуком на ПК нужны устройства: микрофон, звуковая карта и звуковые колонки. Звуковая карта преобразует звук из аналогового сигнала в цифровой и обратно.
Определим домашнее задание.
Три задачи на кодирование текстовой информации. Одна из них творческого характера.
Условия задач записаны на рабочем листочке.
У ПК есть еще вопрос к нам. Мы кодировали символы, звук и графику. А можно закодировать эмоции?
Чтобы оценить наше сотрудничество, я предлагаю вам закодировать свое настроение: в начале урока, в середине урока и в конце урока. Если примеры смайликов с презентации не отразили ваше настроение, можете придумать свои. Спасибо за сотрудничество.
Учащиеся показывают свои смайлики.
Каждая цифра машинного двоичного кода несет количество информации равное
Каждая цифра машинного двоичного кода несет количество информации равное одному биту.
Кодирование текстовой информации
В настоящее время большая часть пользователей при помощи компьютера обрабатывает текстовую информацию, которая состоит из символов: букв, цифр, знаков препинания и др.
т. е. для представления текстовой информации можно использовать алфавит мощностью 256 символов.
Суть кодирования заключается в том, что каждому символу ставят в соответствие двоичный код от 00000000 до 11111111 или соответствующий ему десятичный код от 0 до 255.
Одному и тому же двоичному коду ставится в соответствие различные символы.
Двоичный код | Десятичный код | КОИ8 | СР1251 | СР866 | Мас | ISO |
11000010 | 194 | б | В | — | — | Т |
Цвет | Составляющие | ||
  | к | З | С |
Красный | 1 | 0 | 0 |
Зеленый | 0 | 1 | 0 |
Синий | 0 | 0 | 1 |
Голубой | 0 | 1 | 1 |
Пурпурный | 1 | 0 | 1 |
Желтый | 1 | 1 | 0 |
Белый | 1 | 1 | 1 |
Черный | 0 | 0 | 0 |
Цвет | Составляющие | |||
  | к | З | С | Интенс |
Красный | 1 | 0 | 0 | 0 |
Зеленый | 0 | 1 | 0 | 0 |
Синий | 0 | 0 | 1 | 0 |
Голубой | 0 | 1 | 1 | 0 |
Пурпурный | 1 | 0 | 1 | 1 |
Ярко-желтый | 1 | 1 | 0 | 1 |
Серый(белый) | 1 | 1 | 1 | 0 |
Темно-серый | 0 | 0 | 0 | 1 |
Ярко-голубой | 0 | 1 | 1 | 1 |
Ярко-синий | 0 | 0 | 1 | 0 |
… |   |   |   |   |
Ярко-белый | 1 | 1 | 1 | 1 |
Черный | 0 | 0 | 0 | 0 |
Цвет | Составляющие | ||
  | K | З | С |
Красный | 11111111 | 00000000 | 00000000 |
Зеленый | 00000000 | 11111111 | 00000000 |
Синий | 00000000 | 00000000 | 11111111 |
Голубой | 00000000 | 11111111 | 11111111 |
Пурпурный | 11111111 | 00000000 | 11111111 |
Желтый | 11111111 | 11111111 | 00000000 |
Белый | 11111111 | 11111111 | 11111111 |
Черный | 00000000 | 00000000 | 00000000 |
а | К | Применение |
8 | 256 | Недостаточно для достоверного восстановления исходного сигнала, так как будут большие нелинейные искажения. Применяют в основном в мультимедийных приложениях, где не требуется высокое качество звука |
16 | 65536 | Используется при записи компакт-дисков,так как нелинейные искажения сводятся к минимуму. |
20 | 1048576 | Где требуется высококачественная оцифровка звука. |
В настоящее время появился новый бытовой цифровой формат Audio DVD, который использует разрядность 24 бита и частоту семплирования 96 кГц. С его помощью можно избежать выше рассмотренного недостатка 16-битного кодирования. На современные цифровые звуковые устройства устанавливаются 20-битные преобразователи. Звук так и остается 16-битным, преобразователи повышенной разрядности устанавливают для улучшения качества записи на низких уровнях. Их принцип работы заключается в следующем: исходный аналоговый сигнал оцифровывается с разрядностью 20 бит. Затем цифровой сигнальный процессор DSPП онижает его разрядность до 16 бит. При этом используется специальный алгоритм вычислений, при помощи которого можно снизить искажения низкоуровневых сигналов. Обратный процесс наблюдается при цифро-аналоговом преобразовании: разрядность повышается с 16 до 20 бит при использовании специального алгоритма, который позволяет более точно определять значения амплитуды. То есть звук остается 16-разрядным, но имеется общее улучшение качества звучания. 1. Подсчитать, сколько места будет занимать одна минута цифрового звука на жестком диске или любом другом цифровом носителе, записанного с частотой а) Если записывают моносигнал с частотой 44.1 кГц, разрядностью 16 бит (2 байта), то каждую минуту аналого-цифровой преобразователь будет выдавать 441000 * 2 * 60 = 529000 байт (примерно 5 Мб) данных об амплитуде аналогового сигнала, который в компьютере записываются на жесткий диск. 2. Какой информационный объем имеет моноаудиофайл, длительность звучания которого 1 секунда, при среднем качестве звука (16 бит, 24 кГц)? 16 бит * 24000 = 384000 бит = 48000 байт = 47 кБайт 3. Рассчитайте объем стереоаудиофайла длительностью 20 секунд при 20-битном кодировании и частоте дискретизации 44.1 кГц. 20 бит * 20 * 44100 * 2 = 35280000 бит = 4410000 байт = 4.41 Мб 4. Определить количество уровней звукового сигнала при использовании устаревших 8-битных звуковых карт. 1. Привести пример 2. Что называется
|