кто придумал программный код
Краткая и на 146% точная история языков программирования
Жозеф Мари Жаккар учит ткацкий станок читать перфокарты, создавая первый многопоточный процессор. Изобретение в штыки приняли ткачихи, которые уже тогда что-то подозревали.
Ада Лавлейс, устав от положенного по социальному классу безделья, делает наброски в блокноте, которые станут известны как первая компьютерная программа. С поправкой, конечно, на то, что компьютеров тогда ещё не было.
Алан Тьюринг изобретает вообще всё, королева очарована им, но Тьюринг предпочитает ей мужскую компанию, что заканчивается для него печально.
Позже королева, конечно, остыла и простила Тьюринга, но тот, к сожалению, уже давно был мёртв.
Алонзо Чёрч тоже изобретает вообще всё вместе с Тьюрингом. Но будучи по другую сторону пруда избегает расположения королевы и его последствий.
Джон Бэкус создаёт Фортран — первый язык, который «используют настоящие программисты».
Грейс Хоппер, устав от спарринга с Чаком Норрисом, изобретает первый бизнес-ориентированный язык программирования. Ну а так как всё связанное с бизнесом должно иметь длинное и скучное название, она нарекает его «бизнес-ориентированным языком общего назначения» или COBOL для краткости.
Джон Кемени и Томас Курц решают, что программировать слишком сложно, и им нужно вернуться к базовым принципам. Так что они разбрасывают повсюду номера строк и называют своё детище BASIC.
Никлаус Вирт создаёт Паскаль и пару других языков программирования. Да, кому-то нравится марки собирать, а его хобби было создавать языки программирования.
Никлаус также изобретает Закон Вирта, который делает закон Мура устаревшим, так как разработчики будут писать настолько раздутые программы, что никакие мэйнфреймы не успеют за ними. Как мы знаем, это предсказание сбылось — посмотрите, например, на Electron.js и на его абстракции.
Деннис Ритчи от скуки, нагрянувшей в разгар напряжённого рабочего дня в Bell Labs, решает изобрести «C», который окажет ошеломительное влияние на индустрию: с этого момента все новые языки будут использовать фигурные скобки. «C» так же ввёл ошибки сегментации и другие инновации в программировании.
Так как до конца напряжённого рабочего дня оставалась пара свободных часов, Деннис и его приятели из Bell Labs решили создать пример программы на «C» и случайно создали операционную систему под названием Unix.
Алан Кэй изобретает объектно-ориентированное программирование и называет его Smalltalk. В Smalltalk всё является объектом. Даже объект является объектом.
Ларри Уолл становится проповедником и делает Perl доктриной.
Жан Ишбиа решает создать язык, посвящённый Аде Лавлейс и носящий её имя.
Брэд Кокс и Том Лав решают создать специальную, плохочитаемую версию «C» на основе Smalltalk. Своё детище они назовут Objective-C. И по сей день не нашлось ни одного человека, способного понять синтаксис этого языка.
Бьёрн Страуструп отправляется на своем DeLorean назад в будущее, где замечает, что «C» слишком уж быстро компилируется. Когда же в таком случае будут отдыхать разработчики? Чтобы как-то решить проблему, он добавляет в новый язык всё, что только может придумать, и называет своё детище C++.
Программисты повсеместно используют его, чтобы им не мешали читать xkcd на работе, в то время пока «ещё компилируется».
Роберту Иерузалимски и его друзья решают, что им нужен местный язык сценариев — Lua. Трагическая ошибка при переводе с бразильского приводит к тому, что индексы начинают считать с 1.
Расмус Лердорф создает язык шаблонов для своей персональной страницы в интернете.
Но мир решает использовать язык вообще для всего в вебе, так что Расмус добавляет биндинги к базе данных, и на свет появляется PHP.
Юкихиро Мацумото несчастен и замечает несчастье окружающих. Он создаёт Ruby, чтобы сделать окружающий мир чуточку счастливее. Это работает, и все становятся счастливы.
Брендан Эйх на выходных разрабатывает язык, который позже будет использоваться в каждом браузере в мире и, в конечном итоге, в Skynet.
Первоначально Брендан пошел в Netscape и сказал, что новый язык называется LiveScript, но Java стала популярной как раз во время код ревью, поэтому все решили, что лучше использовать фигурные скобки и переименовать язык в JavaScript.
Из-за проблем с товарными знаками JavaScript был переименован в ECMAScript во время стандартизации, но это уже никому не важно, все продолжают называть язык JavaScript.
Джеймс Гослинг изобретает Java, первый по-настоящему очень подробный объектно-ориентированный язык программирования, в котором шаблоны проектирования преобладают над прагматизмом.
В обиходе появляются фразы вроде «шаблон поставщика менеджера службы поставщика провайдера диспетчера контейнеров».
Андерс Хейлсберг заново изобретает Java и называет её C #, ведь программирование на «C» круче, чем на Java. Все любят новую Java за то, что она совсем непохожа на Java.
Дэвид Хансен создает фреймворк для Ruby под названием Ruby on Rails. Люди не могут понять, что это две разные вещи, и вновь становятся несчастными.
Джон Резиг пишет вспомогательную библиотеку для JavaScript. Почему-то каждый думает, что это новый язык, и целыми днями копипастит сниппеты JQuery из интернета.
Кен Томпсон и Роб Пайк решили создать новый С, но с меньшим быстродействием и большим количеством талисманов в виде сусликов.
Грэйдон Хор тоже хочет создать новый «C». Если другим можно, почему ему нельзя? Он нарекает детище Rust.
Люди требуют, чтобы каждый фрагмент любого программного обеспечения был переписан на Rust СЕЙЧАС ЖЕ. Грейдон не хочет этим заниматься и уходит работать над Swift для Apple.
Андерс Хейлсберг хочет писать на C# в браузерах, так что изобретает TypeScript, который как JavaScript, но с большей долей «Java» и меньшей «Script».
Джереми Ашкенас хочет быть счастливым, как разработчики Ruby, поэтому создает CoffeeScript, который компилируется в JavaScript, но больше похож на Ruby. Но Джереми никогда не становится так же счастлив, как были когда-то разработчики Ruby.
Крис Латтнер делает язык с целью — не быть как Objective-C. В результате Swift похож на Java.
Опережая время: какой язык программирования считается первым
Мы решили разузнать, какой язык программирования был самым первым. Чтобы разобраться в вопросе, начали с зарождения информатики в XIX веке.
Первый программист Ада Лавлейс
Говоря о первом языке, сложно умолчать о первом программисте. Графиня Ада Лавлейс, дочь лорда Байрона, всю свою жизнь посвятила математике и механике, трудилась в свое удовольствие без зарплат и дедлайнов. Результатом ее любви к точным наукам стали описание первой в мире вычислительной машины и создание программы для нее.
Аду Лавлейс часто упоминают вместе с Чарльзом Бэббиджем. Он изобрел первый прототип современного компьютера — логарифмическую машину. Но реализовать ее не удалось: проект разрастался на бумаге, а финансирование от английской короны заканчивалось. Ада познакомилась с ученым при дворе, и с этой встречи началось ее глубокое увлечение его работами.
В 1840 году изобретение Бэббиджа привлекло внимание профессоров из Турина. Он получил приглашение от итальянского правительства, где военный инженер Луиджи Менабреа взял у него интервью о принципах работы разностной машины и издал статью на французском.
В то же время Ада занялась переводом статьи на английский язык, параллельно переписываясь с Бэббиджем. Она не только перевела принцип работы, но и сопроводила его обширным комментарием. В нем она описала алгоритм для вычисления последовательности Бернулли с помощью машины. Кстати, его используют до сих пор, поэтому программа опередила себя на несколько десятков лет. Аду Лавлейс по праву считают первым программистом в истории человечества. В 1980 году в США новый язык назвали в ее честь.
Я не считаю, что структуры головного мозга менее подвластны математикам, нежели движения и свойства звезд и планет; вполне, если выбрать для их рассмотрения правильную точку зрения. Я хотела бы оставить последующим поколениям вычисляемую модель нервной системы.
Машинный код и языки ассемблера
Масштаб работы Бэббиджа и Лавлейс оценили только в ХХ веке, когда научно-технический прогресс шагнул вперед и математики нового поколения увидели, что все это уже было до них.
В 1940-х годах инженеры начали конструировать первые электронно-вычислительные машины — громоздкие, неудобные и с перфокартами. Вот такие:
Для передачи команд использовали цепочки нулей и единиц — машинный код. Мягко говоря, не самый удобный вариант для программистов: приходилось «разговаривать» с компьютером на его языке, хорошо знать составляющие ЭВМ. А еще легко было допустить ошибку при записи кода.
Процесс создания программ требовал автоматизации, и в пятидесятых годах появились первые языки программирования низкого уровня — ассемблеры. Низкий уровень означает, что язык все еще близок к машинному коду, но уже становится проще для восприятия человеком.
Первый высокоуровневый язык Планкалкюль
Часто можно услышать, что первым языком высокого уровня был Fortran (1957). Но еще в разгар Второй мировой войны немецкий ученый Конрад Цузе создал Plankalkül — первый высокоуровневый язык. Он написал на нем49 листов программ для оценки шахматных позиций и документацию в отдельной брошюре. Работы Цузе увидели свет только после войны, в 1972 году.
Планкалкюль — электромеханический язык, так как разрабатывался для компьютера Z4. Автор не создал для него аппаратной реализации. Первый компилятор для Планкалкюля написали в Германии в 2000 году: он называется Plankalkül-2000. Его разработали в Свободном университете Берлина спустя пять лет после смерти Цузе. Это интерпретатор диалекта Планкалкюля — он чуть проще самой первой версии языка. Если вам захочется почувствовать дух истории, на нем даже можно написать простенькую программку.
Plankalkül не нашел практического применения, но вполне соответствует современным стандартам высокоуровневых языков. В нем есть четыре вида переменных, массивы, циклы, кортежи, подпрограммы и условные конструкции. С помощью языка можно выполнять простые арифметические операции и сортировку чисел.
Fortran — первый язык с компилятором
В 1957 году в компании IBM группа программистов, возглавляемая Джоном Бэкусом, представила первый работающий высокоуровневый язык Fortran. В его основе лежит принцип анализа всей строки.
Сегодня Фортрану61 год, но он до сих пор востребован и популярен в Data Science. За это время вышло множество версий, язык эволюционировал и обрел четкие стандарты. Благодаря огромному наследию кода он используется для различных вычислений в научных разработках, геологических изысканиях и астрофизике.
Если вам интересна история, взгляните на потрясающую схему развития языков программирования, начиная с Фортрана.
Как видите, однозначного ответа на вопрос, какой язык программирования придумали первым, не существует. Первую абстрактную программу написала Ада Лавлейс, первым высокоуровневым языком был Plankalkül, но эру высоких информационных технологий начал Fortran. Все они первые в личном зачете, и каждый важен для того или иного этапа развития информационных систем.
Если программирование вас вдохновляет, предлагаем пройти курс «Веб-разработчик». Вы получите представление об основах JavaScript и PHP, примените их на практике и освоите востребованную специальность.
Автор в сфере IT, digital, экономики и финансов. Ведет некоммерческий проект для начинающих писателей «ЛитЦех».
История языков программирования: 1950-е
Программирование появилось задолго до 50-х годов XX века. Первые идеи высказал ещё Чарльз Бэббидж (1792-1871), которого по праву считают отцом компьютера. Он не знал о транзисторах, микросхемах и мониторах, но достаточно точно описал основные принципы, на которых будут строится все вычислительные машины. Развила идею графиня Ада Лавлейс (1815-1852). Её место в истории до сих вызывает немало споров, но одно абсолютно точно – именно Ада фактически стала первым известным программистом. Благодаря её трудам стало понятно, что путь к эффективному использованию машин – алгоритмы, описанные в коде.
Аналитическая машина Бэббиджа
Но программирование не могло развиваться в отрыве от компьютеров. Без них это просто игры разума, абстракция, вне зависимости от качества идей. Поэтому вплоть до 1950-х языки программирования представляли из себя набор машинных инструкций, часто узкоспециализированные и вымирающие вместе с целевым устройством.
Суть проблемы
Сегодня вам не надо ничего знать об архитектуре компьютера, для большинства программистов вообще важен только язык, всё остальное – вторично. В 1950-х всё было иначе – приходилось работать с элементарными машинными кодами, а это практически всё равно что программировать при помощи паяльника.
Ещё одной проблемой было то, что за разработку языков отвечали люди, непосредственно связанные с созданием компьютеров – в первую очередь инженеры и лишь вынужденно программисты. Потому они и представляли язык в виде последовательности номеров операций и ячеек памяти. Грубо говоря, это выглядело так:
01 x y – добавление содержимого ячейки памяти y к ячейке x;
02 x y – аналогичная процедура с вычитанием.
В итоге код программы превращался в бесконечную череду цифр:
Сегодня такой код вам покажется ужасом, но в начале 1950-х был нормой.
Компьютер 1940-х годов
Программистам приходилось долго учиться машинным командам, потом внимательно писать код, а после завершения ещё несколько раз его перепроверять – риск ошибки был велик. Проблемы возникла, когда развитие машин стало тормозиться нехваткой кадров для написания программ. Требовалось срочное решение.
Первый сборщик
Решение лежало на поверхности: необходимо перевести цифровые обозначения операций в буквы. То есть вместо «01 10 15» использовать «ADD 10 15». Это требовало дополнительного перевода символов в машинную команду, но, учитывая проблему, жертва была минимальна.
Решение оказалось настолько очевидным, что доподлинно неизвестно, кто первым изобрёл язык Ассемблера. Вероятнее всего, он появился одновременно сразу в нескольких местах. За название и популяризацию ответственными принято считать авторов книги «The preparation of programs for a digital computer» Уилкса, Уилера и Гилла. Нетрудно догадаться, что название Ассемблер происходит от английского слова assemble – собирать, монтировать, что вполне точно описывает процесс. Позднее символы стали касаться не только простейших операций, но и адресации, что значительно упростило читаемость кода.
Сейчас это кажется элементарным решением, но тогда реализация была сложным процессом, требующим созданий таблиц соответствия, присовения обозначения каждой ячейке памяти. Это привело к трём фундаментальным вещам:
Это стало катализатором языкового прорыва.
Компиляторы и предубеждения
Ассемблер позволил создать простые превращения. Например, перевод 01 в ADD. Макроассемблер расширил эту идею и подарил программистам возможность сворачивать несколько инструкций в одну. К примеру, если в программе вы постоянно добавляли значение в ячейку памяти и проверяли, не переполнена ли она, всё это можно было записать в макрос INCRT и использовать его, меняя лишь переменные. По сути, макроассемблеры превратились в первые языки высокого уровня.
Но в таком подходе заключалась важная проблема – каждый раз перед созданием кода необходимо было сворачивать базовые операции в макросы. Требовался инструмент, который освободит программистов от постоянного копирования. Так появился компилятор.
Теперь-то мы знаем, что благодаря компилятору мы можем создать язык программирования с абсолютно любым синтаксисом, главное, чтобы он грамотно переводил наш код в машинные команды. А в то время специалисты скептически относились к языкам высокого уровня. Частично это было обусловлено производительностью компьютеров – упрощение синтаксиса со сложными трансформациями дорого обходилось, могло вернуть технологический прогресс на несколько лет назад. Частично причиной были эмоции – было тяжело отойти от формы машинных команд, потерять контроль над процессами. Программисты всерьёз боялись, что после компиляции они не смогут понять исполняемые команды. Сегодня нам наплевать, как выглядит машинный код, а в те времена это казалось важной проблемой.
Тем не менее компилятор стал единственным выходом из ситуации, но здесь проявилась другая трудность – арифметические выражения. Их исполнение не совпадает с тем, как машина читает код. Из школьного курса мы знаем порядок вычислений в выражении «2+3*5», но машина читает код в одном направлении, так что ответ будет неверным. Да, указанный пример можно решить, создав макрос, но для сложных выражений уровня «(2 + 3 * 5 + 4/6) * 10 + 16- (14 + 15) * 8» требовался принципиально иной подход.
Эпоха новой формации
Найти алгоритм анализа стека удалось Джону Бэкусу, создателю Фортрана. Он начал работать над ним в 1954 году и ему потребовалось почти 5 лет, чтобы доказать право языков высокого уровня на существование. Полное название Фортрана – The IBM Formula Translating System, или FORmula TRANslator. Несмотря на 60-летний возраст, он остаётся одним из самых популярных языков программирования и невероятно востребован в Data Science. За это время мы видели множество версий: Fortran 1, II, 66, 77, 90, 95, 2008, а в следующем году выйдет ещё одна (планировался Fortran 2015, но из-за задержек название может смениться на 2018). Именно в Фортране впервые были одновременно реализованы многие атрибуты языка высокого уровня, среди которых:
Ещё одним важным наследием Фортрана, о котором даже не догадываются современные программисты, является использование ограничений для переменных для целых чисел. Все они должны были начинаться с одного из 6 символов I, J, K, L, M, N (происходит от I-Nteger). Именно отсюда взялась привычка для перечислений брать переменные i, j и т.д.
IBM 704 – машина, на которой был создан Fortran
При этом Фортран оставался языком, приближенным к машинам. Например, там существовало такое:
Причиной была архитектура компьютера IBM, которой требовалась команда для использования нужного регистра: отрицательного, нулевого или положительного. Близость к машинам проявлялась и в известной команде GOTO (позднее она была унаследована Basic), означавший прямой переход к той или иной команде.
Возвращаясь к проблеме арифметических выражений, алгоритм перебора стека (то есть анализа всей строки) не был эффективным решением, но он доказал, насколько реализация может быть простой и логичной.
Языки для каждого
Fortran 1 был научным языком, в его основе лежали операции с комплексными числами и с плавающей запятой. Он даже не умел обрабатывать текст, для этого приходилось преобразовывать его в специальные коды. Поэтому Фортран оказался непригоден для бизнеса, где был специально создан язык Cobol.
Синтаксис у него принципиально иной, максимально приближенный к естественному английскому языку. Практически не было арифметики, только выражения вида:
Cobol стал олицетворением максимального удаления от прежнего машинно-арифметического мышления к общечеловеческому. И главное – теперь можно было работать с текстом и записями.
Следующим фундаментальным языком стал Algol (ALGOrithmic Language), предназначенный для научных отчётов и публикаций. В нём впервые появились естественные для нас вещи:
Именно из Алгол произошли C, C ++, C #, Java и многие другие популярные сегодня языки.
Четвёртым китом 1950-х стал Лисп (LISt Processing language), разработанный специально для обслуживания искусственного интеллекта. Главной его особенность стала работа не с императивными данными, а с функциями. Для этого Джону Маккарти пришлось предусмотреть множество механизмов для нормальной работы: динамическую типизацию, автоматическое распределение памяти, сборщик мусора. В конечном счёте, именно Лисп стал прародителем таких языков, как Python и Ruby, а сам до сих пор активно применяется в ИИ.
Таким образом, 1950-е изменили образ мышления программистов, подарили четыре фундаментальных языка и поставили мир на рельсы компьютерной революции.
В следующий раз поговорим о том, как развивались языки и мир программирования в 1960-е.
Освоить востребованную профессию в Data Science можно всего за полтора года на курсах GeekBrains. После учёбы вы сможете работать по специальностям Data Scientist, Data Analyst, Machine Learning, Engineer Computer Vision-специалист или NLP-специалист.
Этим текстом я хочу начать цикл статей об истории развития языков программирования. Он является адаптированной версией этого сборника.
Программирование появилось задолго до 50-х годов XX века. Первые идеи высказал ещё Чарльз Бэббидж (1792-1871), которого по праву считают отцом компьютера. Он не знал о транзисторах, микросхемах и мониторах, но достаточно точно описал основные принципы, на которых будут строится все вычислительные машины. Развила идею графиня Ада Лавлейс (1815-1852). Её место в истории до сих вызывает немало споров, но одно абсолютно точно – именно Ада фактически стала первым известным программистом. Благодаря её трудам стало понятно, что путь к эффективному использованию машин – алгоритмы, описанные в коде.
Аналитическая машина Бэббиджа
Но программирование не могло развиваться в отрыве от компьютеров. Без них это просто игры разума, абстракция, вне зависимости от качества идей. Поэтому вплоть до 1950-х языки программирования представляли из себя набор машинных инструкций, часто узкоспециализированные и вымирающие вместе с целевым устройством.
Суть проблемы
Сегодня вам не надо ничего знать об архитектуре компьютера, для большинства программистов вообще важен только язык, всё остальное – вторично. В 1950-х всё было иначе – приходилось работать с элементарными машинными кодами, а это практически всё равно что программировать при помощи паяльника.
Ещё одной проблемой было то, что за разработку языков отвечали люди, непосредственно связанные с созданием компьютеров – в первую очередь инженеры и лишь вынужденно программисты. Потому они и представляли язык в виде последовательности номеров операций и ячеек памяти. Грубо говоря, это выглядело так:
01 x y – добавление содержимого ячейки памяти y к ячейке x;
02 x y – аналогичная процедура с вычитанием.
В итоге код программы превращался в бесконечную череду цифр:
Сегодня такой код вам покажется ужасом, но в начале 1950-х был нормой.
Компьютер 1940-х годов
Программистам приходилось долго учиться машинным командам, потом внимательно писать код, а после завершения ещё несколько раз его перепроверять – риск ошибки был велик. Проблемы возникла, когда развитие машин стало тормозиться нехваткой кадров для написания программ. Требовалось срочное решение.
Первый сборщик
Решение лежало на поверхности: необходимо перевести цифровые обозначения операций в буквы. То есть вместо «01 10 15» использовать «ADD 10 15». Это требовало дополнительного перевода символов в машинную команду, но, учитывая проблему, жертва была минимальна.
Решение оказалось настолько очевидным, что доподлинно неизвестно, кто первым изобрёл язык Ассемблера. Вероятнее всего, он появился одновременно сразу в нескольких местах. За название и популяризацию ответственными принято считать авторов книги «The preparation of programs for a digital computer» Уилкса, Уилера и Гилла. Нетрудно догадаться, что название Ассемблер происходит от английского слова assemble – собирать, монтировать, что вполне точно описывает процесс. Позднее символы стали касаться не только простейших операций, но и адресации, что значительно упростило читаемость кода.
Сейчас это кажется элементарным решением, но тогда реализация была сложным процессом, требующим созданий таблиц соответствия, присовения обозначения каждой ячейке памяти. Это привело к трём фундаментальным вещам:
Это стало катализатором языкового прорыва.
Компиляторы и предубеждения
Ассемблер позволил создать простые превращения. Например, перевод 01 в ADD. Макроассемблер расширил эту идею и подарил программистам возможность сворачивать несколько инструкций в одну. К примеру, если в программе вы постоянно добавляли значение в ячейку памяти и проверяли, не переполнена ли она, всё это можно было записать в макрос INCRT и использовать его, меняя лишь переменные. По сути, макроассемблеры превратились в первые языки высокого уровня.
Но в таком подходе заключалась важная проблема – каждый раз перед созданием кода необходимо было сворачивать базовые операции в макросы. Требовался инструмент, который освободит программистов от постоянного копирования. Так появился компилятор.
Теперь-то мы знаем, что благодаря компилятору мы можем создать язык программирования с абсолютно любым синтаксисом, главное, чтобы он грамотно переводил наш код в машинные команды. А в то время специалисты скептически относились к языкам высокого уровня. Частично это было обусловлено производительностью компьютеров – упрощение синтаксиса со сложными трансформациями дорого обходилось, могло вернуть технологический прогресс на несколько лет назад. Частично причиной были эмоции – было тяжело отойти от формы машинных команд, потерять контроль над процессами. Программисты всерьёз боялись, что после компиляции они не смогут понять исполняемые команды. Сегодня нам наплевать, как выглядит машинный код, а в те времена это казалось важной проблемой.
Тем не менее компилятор стал единственным выходом из ситуации, но здесь проявилась другая трудность – арифметические выражения. Их исполнение не совпадает с тем, как машина читает код. Из школьного курса мы знаем порядок вычислений в выражении «2+3*5», но машина читает код в одном направлении, так что ответ будет неверным. Да, указанный пример можно решить, создав макрос, но для сложных выражений уровня «(2 + 3 * 5 + 4/6) * 10 + 16- (14 + 15) * 8» требовался принципиально иной подход.
Эпоха новой формации
Найти алгоритм анализа стека удалось Джону Бэкусу, создателю Фортрана. Он начал работать над ним в 1954 году и ему потребовалось почти 5 лет, чтобы доказать право языков высокого уровня на существование. Полное название Фортрана – The IBM Formula Translating System, или FORmula TRANslator. Несмотря на 60-летний возраст, он остаётся одним из самых популярных языков программирования и невероятно востребован в Data Science. За это время мы видели множество версий: Fortran 1, II, 66, 77, 90, 95, 2008, а в следующем году выйдет ещё одна (планировался Fortran 2015, но из-за задержек название может смениться на 2018). Именно в Фортране впервые были одновременно реализованы многие атрибуты языка высокого уровня, среди которых:
Ещё одним важным наследием Фортрана, о котором даже не догадываются современные программисты, является использование ограничений для переменных для целых чисел. Все они должны были начинаться с одного из 6 символов I, J, K, L, M, N (происходит от I-Nteger). Именно отсюда взялась привычка для перечислений брать переменные i, j и т.д.
IBM 704 – машина, на которой был создан Fortran
При этом Фортран оставался языком, приближенным к машинам. Например, там существовало такое:
Причиной была архитектура компьютера IBM, которой требовалась команда для использования нужного регистра: отрицательного, нулевого или положительного. Близость к машинам проявлялась и в известной команде GOTO (позднее она была унаследована Basic), означавший прямой переход к той или иной команде.
Возвращаясь к проблеме арифметических выражений, алгоритм перебора стека (то есть анализа всей строки) не был эффективным решением, но он доказал, насколько реализация может быть простой и логичной.
Языки для каждого
Fortran 1 был научным языком, в его основе лежали операции с комплексными числами и с плавающей запятой. Он даже не умел обрабатывать текст, для этого приходилось преобразовывать его в специальные коды. Поэтому Фортран оказался непригоден для бизнеса, где был специально создан язык Cobol.
Синтаксис у него принципиально иной, максимально приближенный к естественному английскому языку. Практически не было арифметики, только выражения вида:
Cobol стал олицетворением максимального удаления от прежнего машинно-арифметического мышления к общечеловеческому. И главное – теперь можно было работать с текстом и записями.
Следующим фундаментальным языком стал Algol (ALGOrithmic Language), предназначенный для научных отчётов и публикаций. В нём впервые появились естественные для нас вещи:
Именно из Алгол произошли C, C ++, C #, Java и многие другие популярные сегодня языки.
Четвёртым китом 1950-х стал Лисп (LISt Processing language), разработанный специально для обслуживания искусственного интеллекта. Главной его особенность стала работа не с императивными данными, а с функциями. Для этого Джону Маккарти пришлось предусмотреть множество механизмов для нормальной работы: динамическую типизацию, автоматическое распределение памяти, сборщик мусора. В конечном счёте, именно Лисп стал прародителем таких языков, как Python и Ruby, а сам до сих пор активно применяется в ИИ.
Таким образом, 1950-е изменили образ мышления программистов, подарили четыре фундаментальных языка и поставили мир на рельсы компьютерной революции.
В следующий раз поговорим о том, как развивались языки и мир программирования в 1960-е.
Освоить востребованную профессию в Data Science можно всего за полтора года на курсах GeekBrains. После учёбы вы сможете работать по специальностям Data Scientist, Data Analyst, Machine Learning, Engineer Computer Vision-специалист или NLP-специалист.