машинное обучение что изучать
Как постичь машинное обучение, если ты не великий математик
Предлагаем почитать перевод статьи Diego Isco с ресурса dev.to. Она будет полезна начинающим специалистам в области ML.
Несколько месяцев назад я изучал проекты, в которых благодаря машинному обучению успешно реализуются невероятные вещи.
И я загорелся этим. Сказал, что хочу этому научиться. Неважно, насколько трудно мне будет. Я хочу научиться, и я научусь.
Будем честны: все мы слышали о зарплатах инженеров по машинному обучению. Взгляните на это.
Впечатляет, правда? Но машинное обучение еще нужно освоить — и вот тут начинается мрак.
Воодушевленный, я начал изучать работы по этой теме, и знаете что? Везде — математика! Навороченные уравнения, линейная алгебра, векторы и странные символы.
В тот вечер я плакал как ребенок. Но, как хороший технарь, утер слезы и решил учиться самостоятельно.
Да, я просто еще один нерд, пытающийся осилить машинное обучение.
Но мне скучно изучать сложные темы. Особенно во время карантина. Поэтому я хочу попробовать что-нибудь другое. Я опишу свой процесс обучения.
Ход обучения
Математика → Статистика → Программирование → Машинное обучение → Любительские проекты
Когда вы будете искать на YouTube видео о машинном обучении, то обязательно наткнетесь на 3 основных — от Siral Raval, Jabril и Daniel Bourke.
Все они — выше всяких похвал. Поэтому я решил взять из этих видео лучшее.
Математика
Много споров по поводу того, насколько хорошо нужно знать математику для освоения машинного обучения. Но знать точно нужно.
Возможно, некоторые из вас чертовски гениальны в математике и вам достаточно вспомнить лишь отдельные вещи. Но большинству простых смертных вроде меня нужно всему учиться с нуля.
Хорошо, а что именно нужно знать? Всего-то линейную алгебру и матанализ.
Напоминаю: я не гений в математике. Я плохо разбираюсь в математике. Я завалил матанализ на всех курсах в университете!
Так вот, можно ли освоить теорию машинного обучения, не будучи гением в математике?
Есть один нюанс. Если вы не дружите с числами, то это потому, что не понимаете основ.
Помните основы? Об основах линейной алгебры и математического анализа рассказывает на канале 3Blue1Brown Грант Сандерсон. Ему надо дать Нобелевскую премию в области образования. Он просто берет математику объясняет ее в потрясающей форме. Как ребенку. Это прекрасно.
Итак, моим первым шагом было понять основы линейной алгебры и математического анализа. Поверьте, после этого все намного проще.
Мы посмотрели и осмыслили эти видео, теперь время применить свои знания на практике — на курсе линейной алгебры от крупнейшего специалиста в сфере преподавания математики — Гилберта Стрэнга из Массачусетского технологического института.
Подумать только: получать такое же образование, что и студенты, заплатившие тысячи долларов за очный курс! Да, диплома одного из лучших университетов мира не будет, но накопленные знания — вот что в итоге имеет значение.
Что ж, мы усвоили этот длинный курс и попрактиковались, теперь черед математического анализа. В Академии Хана есть потрясающая программа, которая дает все, что надо для того, чтобы чувствовать себя уверенно, имея дело с мудреными уравнениями.
Статистика
Многих людей сбивает с толку то, насколько машинное обучение похоже на статистику. На самом деле они тесно связаны друг с другом, так что статистика — ключ к пониманию теории машинного обучения.
Поэтому сосредоточьтесь и учитесь.
А для облегчения этой задачи — бесплатный курс Probability — The Science of Uncertainty and Data от Массачусетского технологического института.
Читая учебную программу, вы можете подумать, что курс базовый, но это не так. Он охватывает достаточно тем, чтобы дать основы для понимания теории вероятности. Всем, кто любит поучиться, вот еще один курс — Statistics and Probability от Академии Хана. Это в дополнение, так что расслабьтесь.
Программирование
Если вы, как и я, инженер-программист, то для вас сейчас будет самое интересное.
Язык программирования, который необходимо знать, это Python. Король машинного обучения. Его простота делает процесс освоения материала очень легким — по крайней мере, поначалу.
Я предполагаю, что вы знаете программирование, так что не хочу пересказывать содержание курсов для изучения Python — их много. Кроме того, есть отличные книги. Вам решать, где набраться знаний.
Кому-то может быть удобнее изучать документацию или пользоваться подпиской на учебную онлайн-платформу, а у кого-то есть любимый учитель на Udemy. Главное, не забывайте практиковаться, чтобы лучше понимать, что происходит при программировании для машинного обучения.
Ладно, допустим, вы не знаете программирования, и это будет ваша первая строчка кода. В таком случае я бы выбрал Datacamp. Смело исследуйте тему самостоятельно и смотрите их курс по Python.
Машинное обучение
Мы уже далеко продвинулись. Изучили математику, статистику, алгоритмы, проплакали несколько ночей. Все ради этого момента.
Курс по машинному обучению от Эндрю Ына — наверное, один из лучших по теме. Он не для новичков, так что не убирайте далеко свои конспекты. Наконец то, как работают алгоритмы машинного обучения, сложится для вас в цельную картинку.
Еще один ресурс — это Introduction to Machine Learning for Coders. Хороший курс с детальными объяснениями алгоритмов машинного обучения.
Советую пройти оба, изучить вопрос с разных сторон, тогда вы сможете сказать, какой курс оказался наиболее понятным.
Не могу не упомянуть еще одну программу, которую очень хвалят. Но она платная: это Introduction to Machine Learning Course нa Udacity. Если у вас отложено немного денег и вы готовы инвестировать в себя, то это подходящий случай, но решайте сами.
Любительские проекты
Теперь вы уже знаете машинное обучение, но этого недостаточно. Вам нужно больше практики. Здесь вам поможет книга Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow.
После этого можно браться за любительские проекты, но уже с лучшими библиотеками машинного обучения. Если вам, как и мне, не нравится опираться на библиотеки без понимания, что к чему, то не волнуйтесь: вы уже разбираетесь. Поэтому я даю эту книгу в самом конце.
И напоследок
Прежде чем завершить, хочу дать несколько советов.
Машинное обучение — это легко
Для кого эта статья?
Каждый, кому будет интересно затем покопаться в истории за поиском новых фактов, или каждый, кто хотя бы раз задавался вопросом «как же все таки это, машинное обучение, работает», найдёт здесь ответ на интересующий его вопрос. Вероятнее всего, опытный читатель не найдёт здесь для себя ничего интересного, так как программная часть оставляет желать лучшего несколько упрощена для освоения начинающими, однако осведомиться о происхождении машинного обучения и его развитии в целом не помешает никому.
В цифрах
С каждым годом растёт потребность в изучении больших данных как для компаний, так и для активных энтузиастов. В таких крупных компаниях, как Яндекс или Google, всё чаще используются такие инструменты для изучения данных, как язык программирования R, или библиотеки для Python (в этой статье я привожу примеры, написанные под Python 3). Согласно Закону Мура (а на картинке — и он сам), количество транзисторов на интегральной схеме удваивается каждые 24 месяца. Это значит, что с каждым годом производительность наших компьютеров растёт, а значит и ранее недоступные границы познания снова «смещаются вправо» — открывается простор для изучения больших данных, с чем и связано в первую очередь создание «науки о больших данных», изучение которого в основном стало возможным благодаря применению ранее описанных алгоритмов машинного обучения, проверить которые стало возможным лишь спустя полвека. Кто знает, может быть уже через несколько лет мы сможем в абсолютной точности описывать различные формы движения жидкости, например.
Анализ данных — это просто?
Да. А так же интересно. Наряду с особенной важностью для всего человечества изучать большие данные стоит относительная простота в самостоятельном их изучении и применении полученного «ответа» (от энтузиаста к энтузиастам). Для решения задачи классификации сегодня имеется огромное количество ресурсов; опуская большинство из них, можно воспользоваться средствами библиотеки Scikit-learn (SKlearn). Создаём свою первую обучаемую машину:
Вот мы и создали простейшую машину, способную предсказывать (или классифицировать) значения аргументов по их признакам.
— Если все так просто, почему до сих пор не каждый предсказывает, например, цены на валюту?
С этими словами можно было бы закончить статью, однако делать я этого, конечно же, не буду (буду конечно, но позже) существуют определенные нюансы выполнения корректности прогнозов для поставленных задач. Далеко не каждая задача решается вот так легко (о чем подробнее можно прочитать здесь)
Ближе к делу
— Получается, зарабатывать на этом деле я не сразу смогу?
Итак, сегодня нам потребуются:
Дальнейшее использование требует от читателя некоторых знаний о синтаксисе Python и его возможностях (в конце статьи будут представлены ссылки на полезные ресурсы, среди них и «основы Python 3»).
Как обычно, импортируем необходимые для работы библиотеки:
— Ладно, с Numpy всё понятно. Но зачем нам Pandas, да и еще read_csv?
Иногда бывает удобно «визуализировать» имеющиеся данные, тогда с ними становится проще работать. Тем более, большинство датасетов с популярного сервиса Kaggle собрано пользователями в формате CSV.
— Помнится, ты использовал слово «датасет». Так что же это такое?
Датасет — выборка данных, обычно в формате «множество из множеств признаков» → «некоторые значения» (которыми могут быть, например, цены на жильё, или порядковый номер множества некоторых классов), где X — множество признаков, а y — те самые некоторые значения. Определять, например, правильные индексы для множества классов — задача классификации, а искать целевые значения (такие как цена, или расстояния до объектов) — задача ранжирования. Подробнее о видах машинного обучения можно прочесть в статьях и публикациях, ссылки на которые, как и обещал, будут в конце статьи.
Знакомимся с данными
Предложенный датасет можно скачать здесь. Ссылка на исходные данные и описание признаков будет в конце статьи. По представленным параметрам нам предлагается определять, к какому сорту относится то или иное вино. Теперь мы можем разобраться, что же там происходит:
Работая в Jupyter notebook, получаем такой ответ:
Это значит, что теперь нам доступны данные для анализа. В первом столбце значения Grade показывают, к какому сорту относится вино, а остальные столбцы — признаки, по которым их можно различать. Попробуйте ввести вместо data.head() просто data — теперь для просмотра вам доступна не только «верхняя часть» датасета.
Простая реализация задачи на классификацию
Переходим к основной части статьи — решаем задачу классификации. Всё по порядку:
Создаем массивы, где X — признаки (с 1 по 13 колонки), y — классы (0ая колонка). Затем, чтобы собрать тестовую и обучающую выборку из исходных данных, воспользуемся удобной функцией кросс-валидации train_test_split, реализованной в scikit-learn. С готовыми выборками работаем дальше — импортируем RandomForestClassifier из ensemble в sklearn. Этот класс содержит в себе все необходимые для обучения и тестирования машины методы и функции. Присваиваем переменной clf (classifier) класс RandomForestClassifier, затем вызовом функции fit() обучаем машину из класса clf, где X_train — признаки категорий y_train. Теперь можно использовать встроенную в класс метрику score, чтобы определить точность предсказанных для X_test категорий по истинным значениям этих категорий y_test. При использовании данной метрики выводится значение точности от 0 до 1, где 1 100% Готово!
— Неплохая точность. Всегда ли так получается?
Для решения задач на классификацию важным фактором является выбор наилучших параметров для обучающей выборки категорий. Чем больше, тем лучше. Но не всегда (об этом также можно прочитать подробнее в интернете, однако, скорее всего, я напишу об этом ещё одну статью, рассчитанную на начинающих).
— Слишком легко. Больше мяса!
Для наглядного просмотра результата обучения на данном датасете можно привести такой пример: оставив только два параметра, чтобы задать их в двумерном пространстве, построим график обученной выборки (получится примерно такой график, он зависит от обучения):
Да, с уменьшением количества признаков, падает и точность распознавания. И график получился не особенно-то красивым, но это и не решающее в простом анализе: вполне наглядно видно, как машина выделила обучающую выборку (точки) и сравнила её с предсказанными (заливка) значениями.
Предлагаю читателю самостоятельно узнать почему и как он работает.
Последнее слово
Надеюсь, данная статья помогла хоть чуть-чуть освоиться Вам в разработке простого машинного обучения на Python. Этих знаний будет достаточно, чтобы продолжить интенсивный курс по дальнейшему изучению BigData+Machine Learning. Главное, переходить от простого к углубленному постепенно. А вот полезные ресурсы и статьи, как и обещал:
Материалы, вдохновившие автора на создание данной статьи
Более углубленное изучение использования машинного обучения с Python стало возможным, и более простым благодаря преподавателям с Яндекса — этот курс обладает всеми необходимыми средствами объяснения, как же работает вся система, рассказывается подробнее о видах машинного обучения итд.
Файл сегодняшнего датасета был взят отсюда и несколько модифицирован.
Где брать данные, или «хранилище датасетов» — здесь собрано огромное количество данных от самых разных источников. Очень полезно тренироваться на реальных данных.
Буду признателен за поддержку по улучшению данной статьи, а так же готов к любому виду конструктивной критики.
От новичка до профи в машинном обучении за 3 месяца
В этой статье мы расскажем, как за три месяца получить самообразование в машинном обучении. Приводятся ссылки на соответствующие ресурсы.
На нашем сайте регулярно поднимаются вопросы самообразования в машинном обучении и анализе данных. Источником для этой статьи послужило видео, недавно опубликованное на YouTube-канале известного специалиста в области ML Siraj Raval. Для упрощения старта мы дополнили предлагаемый подход некоторыми русскоязычными материалами. Однако мы старались не перенасыщать статью подобными дополнениями, чтобы у читателей не возникла проблема выбора.
Это лишь один из возможных путей интенсивного обучения: в комментариях к статье вы можете предложить другие подходы.
Анализ вакансий
Рассмотрение новой сферы деятельности полезно начать с анализа вакансий в ведущих фирмах соответствующей отрасли. Для этого рассмотрим страницу с вакансиями в компании DeepMind, разрабатывающей инструменты, широко применяемые в машинном обучении. Нас интересует позиция Research Engineer. Ниже приведен скриншот страницы сайта с примером такой вакансии:
Необходимая квалификация заключается в степени бакалавра в информатике (математике, физике или электронике), уверенное владение Python, опыт в машинном обучении и/или статистике и разработке алгоритмов. Не только в минимальных требованиях, но и в пожеланиях работодателей ничего не сказано о степени кандидата наук (PhD) или научных публикациях.
Распределение математики в машинном обучении
Если составить круговую диаграмму, в которой будут распределены необходимые в машинном обучении математические знания, темы распределятся примерно следующим образом:
В описываемом подходе предлагается первый месяц посвятить математике и алгоритмам, второй – машинному обучению, а третий – наиболее популярному подразделу ML – Deep learning.
Общие рекомендации
Начав образование в новой стремительно развивающейся сфере, полезно находиться внутри контекста. Перечислим несколько ресурсов, позволяющих привыкнуть к терминологии и следить за последними новшествами:
Общие рекомендации следующие. Даже если вы трудитесь на постоянной работе, каждый день занимайтесь обучением хотя бы по 2-3 часа, не прерывайте занятия. Если вы занимаетесь по видеолекциям, ускоряйте видео, если вы достаточно знакомы с материалом и его легко воспринимать. Обязательно ведите конспект, чтобы задействовать моторную память и глубже проработать материал. Делайте не менее одного проекта в конце каждой недели, где вы воспользуетесь полученными знаниями.
Для каждой из рассматриваемых тем можно найти своеобразную шпаргалку – краткое изложение основных идей этой области, по которым вы можете свериться насколько вы усвоили тему, а позже – при необходимости сможете освежить знания. На английском языке такие выжимки можно найти по словосочетанию cheat sheet.
Не волнуйтесь, если большинство курсов вы проходите быстрее, чем предполагают авторы. Определение интервала времени, необходимого для прохождения курса – это субъективная вещь и у относительно мотивированных учеников эта оценка обычно завышена.
Также не забывайте о книгах.
Первый месяц. Математика и алгоритмы
Неделя 1. Линейная алгебра
В машинном обучении не обойтись без знаний линейной алгебры. Курс по линейной алгебре, прочитанный Гильбертом Стронгом является одним из наиболее популярных курсов на MIT OpenCourseWare. В визуализации таких вещей, как векторное произведение и определители, вам поможет описанный нами курс 3Blue1Brown. В качестве шпаргалки можно воспользоваться суперкратким изложением линейной алгебры на четырех страницах, скриншот которого был приведен выше. На этом этапе важно усвоить сами концепции линейной алгебры. Со множеством реальных примеров вы далее обязательно столкнетесь на практике.
Неделя 2. Математический анализ
По математическому анализу существует уйма замечательных курсов, лучший из них вы можете выбрать по одному из обсуждений на Quora. В дополнение, в визуализации образов математического анализа вам поможет еще один описанный нами иллюстративный курс 3Blue1Brown.
Неделя 3. Теория вероятностей
На третьей неделе предлагается познакомиться с основами теории вероятностей. В этом плане можно рекомендовать Курс MIT по введению в теорию вероятности, выложенный на edX, и получивший по оценкам прошедших его студентов пять звезд из пяти.
Неделя 4. Алгоритмы
Для изучения темы алгоритмов вы можете выбрать один из курсов по алгоритмам на Coursera. Мы также рекомендуем замечательный видеокурс на русском языке.
Не бойтесь, что знания в конце первого месяца будут ощущаться как неполные и разрозненные: следующие недели позволят вам их дополнить, закрепить и поверить в собственные силы.
Второй месяц. Машинное обучение
Неделя 1. Python для Data Science
Первую неделю второго месяца предлагается провести в обучении по трем плейлистам. Начните с небольшого плейлиста Python для Data Science. Полученные на первых четырех неделях знания из линейной алгебры, математического анализа, теории вероятностей и алгоритмов будут рассмотрены относительно применения в машинном обучении в плейлисте из 19 уроков Math of Intelligence. В завершение недели пройдите курс Введения в Tensorflow – самого популярного фреймворка для машинного обучения.
Неделя 2. Введение в машинное обучение
Полученные на предыдущей неделе знания будут расширены и обобщены при прохождении на второй неделе вводного курса Udacity по машинному обучению. Пройдя этот курс, вы достигните экватора этого трехмесячного интенсива и будете готовы к разработке настоящих проектов по машинному обучению.
Недели 3 и 4. Идеи для проектов по машинному обучению
Самое время потренироваться на реальных задачах. Большая подборка идей для проектов собрана на GitHub. Кроме того, вы можете попробовать свои силы в одном из соревнований Kaggle – ресурса, на котором специалисты по анализу данных соревнуются в разработке лучших решений для заданий, поставленных и оплачиваемых различными компаниями.
Машинное обучение заставляет постоянно выбирать между множеством микроальтернатив на пути к решению крупной аналитической проблемы. В качестве инструмента таких высокоуровневых микрорешений вы можете использовать scikit-learn. К концу месяца необходимо, чтобы вы разбирались в подготовке, разбиении и оптимизации данных, типах/моделях обучения, а также умели реализовать с нуля модель простого градиентного спуска, лежащую в основе многих стратегий машинного обучения.
Третий месяц
Неделя 1. Введение в глубокое обучение
Начать разбираться в глубоком обучении можно с плейлиста введения в Deep Learning из 34 уроков, рассматривающих при помощи Tensor Flow множество реальных задач. Если вы хотите познакомиться с некоторыми алгоритмами работы с нейронными сетями на русском языке, мы описали для вас такой курс.
Неделя 2. Курс по глубокому обучению
Продолжить обучение Deep Learning вы можете, пройдя 36-часовой курс высококачественных уроков на fast.ai, которые существенно расширят ваш кругозор относительно области глубокого обучения.
Недели 3 и 4. Проекты по глубокому обучению
Наконец, вы должны научиться на практике решать задачи при помощи Deep Learning, делая по 5-10 проектов в неделю. В этом вам поможет упомянутая выше страница Siraj Raval на GitHub. Такие задачи появляются время от времени и на нашем сайте. Некоторые из подобных проектов мы обобщили в этом обзоре. Вы можете попробовать свои силы также в одном из дискуссионных вопросов, к которым относятся, например, задачи прогноза в трейдинге.
После обучения
После этого трехмесячного интенсива вы можете почувствовать себя достаточно уверенно, чтобы попробовать свои силы для подачи резюме на вакансию инженера по машинному обучению. Подготовленные за эти три месяца проекты наполнят ваше портфолио. Кроме того, вы можете заняться консалтингом в этой области или попытать свои силы в создании стартапа на основе искусственного интеллекта.
Введение в машинное обучение
1.1 Введение
Благодаря машинному обучению программист не обязан писать инструкции, учитывающие все возможные проблемы и содержащие все решения. Вместо этого в компьютер (или отдельную программу) закладывают алгоритм самостоятельного нахождения решений путём комплексного использования статистических данных, из которых выводятся закономерности и на основе которых делаются прогнозы.
Технология машинного обучения на основе анализа данных берёт начало в 1950 году, когда начали разрабатывать первые программы для игры в шашки. За прошедшие десятилетий общий принцип не изменился. Зато благодаря взрывному росту вычислительных мощностей компьютеров многократно усложнились закономерности и прогнозы, создаваемые ими, и расширился круг проблем и задач, решаемых с использованием машинного обучения.
Чтобы запустить процесс машинного обучение, для начала необходимо загрузить в компьютер Датасет(некоторое количество исходных данных), на которых алгоритм будет учиться обрабатывать запросы. Например, могут быть фотографии собак и котов, на которых уже есть метки, обозначающие к кому они относятся. После процесса обучения, программа уже сама сможет распознавать собак и котов на новых изображениях без содержания меток. Процесс обучения продолжается и после выданных прогнозов, чем больше данных мы проанализировали программой, тем более точно она распознает нужные изображения.
Благодаря машинному обучению компьютеры учатся распознавать на фотографиях и рисунках не только лица, но и пейзажи, предметы, текст и цифры. Что касается текста, то и здесь не обойтись без машинного обучения: функция проверки грамматики сейчас присутствует в любом текстовом редакторе и даже в телефонах. Причем учитывается не только написание слов, но и контекст, оттенки смысла и другие тонкие лингвистические аспекты. Более того, уже существует программное обеспечение, способное без участия человека писать новостные статьи (на тему экономики и, к примеру, спорта).
1.2 Типы задач машинного обучения
Все задачи, решаемые с помощью ML, относятся к одной из следующих категорий.
1)Задача регрессии – прогноз на основе выборки объектов с различными признаками. На выходе должно получиться вещественное число (2, 35, 76.454 и др.), к примеру цена квартиры, стоимость ценной бумаги по прошествии полугода, ожидаемый доход магазина на следующий месяц, качество вина при слепом тестировании.
2)Задача классификации – получение категориального ответа на основе набора признаков. Имеет конечное количество ответов (как правило, в формате «да» или «нет»): есть ли на фотографии кот, является ли изображение человеческим лицом, болен ли пациент раком.
3)Задача кластеризации – распределение данных на группы: разделение всех клиентов мобильного оператора по уровню платёжеспособности, отнесение космических объектов к той или иной категории (планета, звёзда, чёрная дыра и т. п.).
4)Задача уменьшения размерности – сведение большого числа признаков к меньшему (обычно 2–3) для удобства их последующей визуализации (например, сжатие данных).
5)Задача выявления аномалий – отделение аномалий от стандартных случаев. На первый взгляд она совпадает с задачей классификации, но есть одно существенное отличие: аномалии – явление редкое, и обучающих примеров, на которых можно натаскать машинно обучающуюся модель на выявление таких объектов, либо исчезающе мало, либо просто нет, поэтому методы классификации здесь не работают. На практике такой задачей является, например, выявление мошеннических действий с банковскими картами.
1.3 Основные виды машинного обучения
Основная масса задач, решаемых при помощи методов машинного обучения, относится к двум разным видам: обучение с учителем (supervised learning) либо без него (unsupervised learning). Однако этим учителем вовсе не обязательно является сам программист, который стоит над компьютером и контролирует каждое действие в программе. «Учитель» в терминах машинного обучения – это само вмешательство человека в процесс обработки информации. В обоих видах обучения машине предоставляются исходные данные, которые ей предстоит проанализировать и найти закономерности. Различие лишь в том, что при обучении с учителем есть ряд гипотез, которые необходимо опровергнуть или подтвердить. Эту разницу легко понять на примерах.
Машинное обучение с учителем
Предположим, в нашем распоряжении оказались сведения о десяти тысячах московских квартир: площадь, этаж, район, наличие или отсутствие парковки у дома, расстояние от метро, цена квартиры и т. п. Нам необходимо создать модель, предсказывающую рыночную стоимость квартиры по её параметрам. Это идеальный пример машинного обучения с учителем: у нас есть исходные данные (количество квартир и их свойства, которые называются признаками) и готовый ответ по каждой из квартир – её стоимость. Программе предстоит решить задачу регрессии.
Ещё пример из практики: подтвердить или опровергнуть наличие рака у пациента, зная все его медицинские показатели. Выяснить, является ли входящее письмо спамом, проанализировав его текст. Это всё задачи на классификацию.
Машинное обучение без учителя
В случае обучения без учителя, когда готовых «правильных ответов» системе не предоставлено, всё обстоит ещё интереснее. Например, у нас есть информация о весе и росте какого-то количества людей, и эти данные нужно распределить по трём группам, для каждой из которых предстоит пошить рубашки подходящих размеров. Это задача кластеризации. В этом случае предстоит разделить все данные на 3 кластера (но, как правило, такого строгого и единственно возможного деления нет).
Если взять другую ситуацию, когда каждый из объектов в выборке обладает сотней различных признаков, то основной трудностью будет графическое отображение такой выборки. Поэтому количество признаков уменьшают до двух или трёх, и становится возможным визуализировать их на плоскости или в 3D. Это – задача уменьшения размерности.
1.4 Основные алгоритмы моделей машинного обучения
1. Дерево принятия решений
Это метод поддержки принятия решений, основанный на использовании древовидного графа: модели принятия решений, которая учитывает их потенциальные последствия (с расчётом вероятности наступления того или иного события), эффективность, ресурсозатратность.
Для бизнес-процессов это дерево складывается из минимального числа вопросов, предполагающих однозначный ответ — «да» или «нет». Последовательно дав ответы на все эти вопросы, мы приходим к правильному выбору. Методологические преимущества дерева принятия решений – в том, что оно структурирует и систематизирует проблему, а итоговое решение принимается на основе логических выводов.
2. Наивная байесовская классификация
Наивные байесовские классификаторы относятся к семейству простых вероятностных классификаторов и берут начало из теоремы Байеса, которая применительно к данному случаю рассматривает функции как независимые (это называется строгим, или наивным, предположением). На практике используется в следующих областях машинного обучения:
Всем, кто хоть немного изучал статистику, знакомо понятие линейной регрессии. К вариантам её реализации относятся и наименьшие квадраты. Обычно с помощью линейной регрессии решают задачи по подгонке прямой, которая проходит через множество точек. Вот как это делается с помощью метода наименьших квадратов: провести прямую, измерить расстояние от неё до каждой из точек (точки и линию соединяют вертикальными отрезками), получившуюся сумму перенести наверх. В результате та кривая, в которой сумма расстояний будет наименьшей, и есть искомая (эта линия пройдёт через точки с нормально распределённым отклонением от истинного значения).
Линейная функция обычно используется при подборе данных для машинного обучения, а метод наименьших квадратов – для сведения к минимуму погрешностей путем создания метрики ошибок.
4. Логистическая регрессия
Логистическая регрессия – это способ определения зависимости между переменными, одна из которых категориально зависима, а другие независимы. Для этого применяется логистическая функция (аккумулятивное логистическое распределение). Практическое значение логистической регрессии заключается в том, что она является мощным статистическим методом предсказания событий, который включает в себя одну или несколько независимых переменных. Это востребовано в следующих ситуациях:
Это целый набор алгоритмов, необходимых для решения задач на классификацию и регрессионный анализ. Исходя из того что объект, находящийся в N-мерном пространстве, относится к одному из двух классов, метод опорных векторов строит гиперплоскость с мерностью (N – 1), чтобы все объекты оказались в одной из двух групп. На бумаге это можно изобразить так: есть точки двух разных видов, и их можно линейно разделить. Кроме сепарации точек, данный метод генерирует гиперплоскость таким образом, чтобы она была максимально удалена от самой близкой точки каждой группы.
SVM и его модификации помогают решать такие сложные задачи машинного обучения, как сплайсинг ДНК, определение пола человека по фотографии, вывод рекламных баннеров на сайты.
Он базируется на алгоритмах машинного обучения, генерирующих множество классификаторов и разделяющих все объекты из вновь поступающих данных на основе их усреднения или итогов голосования. Изначально метод ансамблей был частным случаем байесовского усреднения, но затем усложнился и оброс дополнительными алгоритмами:
Кластеризация заключается в распределении множества объектов по категориям так, чтобы в каждой категории – кластере – оказались наиболее схожие между собой элементы.
Кластеризировать объекты можно по разным алгоритмам. Чаще всего используют следующие:
8. Метод главных компонент (PCA)
Метод главных компонент, или PCA, представляет собой статистическую операцию по ортогональному преобразованию, которая имеет своей целью перевод наблюдений за переменными, которые могут быть как-то взаимосвязаны между собой, в набор главных компонент – значений, которые линейно не коррелированы.
Практические задачи, в которых применяется PCA, – визуализация и большинство процедур сжатия, упрощения, минимизации данных для того, чтобы облегчить процесс обучения. Однако метод главных компонент не годится для ситуаций, когда исходные данные слабо упорядочены (то есть все компоненты метода характеризуются высокой дисперсией). Так что его применимость определяется тем, насколько хорошо изучена и описана предметная область.
9. Сингулярное разложение
В линейной алгебре сингулярное разложение, или SVD, определяется как разложение прямоугольной матрицы, состоящей из комплексных или вещественных чисел. Так, матрицу M размерностью [m*n] можно разложить таким образом, что M = UΣV, где U и V будут унитарными матрицами, а Σ – диагональной.
Одним из частных случаев сингулярного разложения является метод главных компонент. Самые первые технологии компьютерного зрения разрабатывались на основе SVD и PCA и работали следующим образом: вначале лица (или другие паттерны, которые предстояло найти) представляли в виде суммы базисных компонент, затем уменьшали их размерность, после чего производили их сопоставление с изображениями из выборки. Современные алгоритмы сингулярного разложения в машинном обучении, конечно, значительно сложнее и изощрённее, чем их предшественники, но суть их в целом нем изменилась.
10. Анализ независимых компонент (ICA)
Это один из статистических методов, который выявляет скрытые факторы, оказывающие влияние на случайные величины, сигналы и пр. ICA формирует порождающую модель для баз многофакторных данных. Переменные в модели содержат некоторые скрытые переменные, причем нет никакой информации о правилах их смешивания. Эти скрытые переменные являются независимыми компонентами выборки и считаются негауссовскими сигналами.
В отличие от анализа главных компонент, который связан с данным методом, анализ независимых компонент более эффективен, особенно в тех случаях, когда классические подходы оказываются бессильны. Он обнаруживает скрытые причины явлений и благодаря этому нашёл широкое применение в самых различных областях – от астрономии и медицины до распознавания речи, автоматического тестирования и анализа динамики финансовых показателей.
1.5 Примеры применения в реальной жизни
Пример 1. Диагностика заболеваний
Пациенты в данном случае являются объектами, а признаками – все наблюдающиеся у них симптомы, анамнез, результаты анализов, уже предпринятые лечебные меры (фактически вся история болезни, формализованная и разбитая на отдельные критерии). Некоторые признаки – пол, наличие или отсутствие головной боли, кашля, сыпи и иные – рассматриваются как бинарные. Оценка тяжести состояния (крайне тяжёлое, средней тяжести и др.) является порядковым признаком, а многие другие – количественными: объём лекарственного препарата, уровень гемоглобина в крови, показатели артериального давления и пульса, возраст, вес. Собрав информацию о состоянии пациента, содержащую много таких признаков, можно загрузить её в компьютер и с помощью программы, способной к машинному обучению, решить следующие задачи:
Пример 2. Поиск мест залегания полезных ископаемых
В роли признаков здесь выступают сведения, добытые при помощи геологической разведки: наличие на территории местности каких-либо пород (и это будет признаком бинарного типа), их физические и химические свойства (которые раскладываются на ряд количественных и качественных признаков).
Для обучающей выборки берутся 2 вида прецедентов: районы, где точно присутствуют месторождения полезных ископаемых, и районы с похожими характеристиками, где эти ископаемые не были обнаружены. Но добыча редких полезных ископаемых имеет свою специфику: во многих случаях количество признаков значительно превышает число объектов, и методы традиционной статистики плохо подходят для таких ситуаций. Поэтому при машинном обучении акцент делается на обнаружение закономерностей в уже собранном массиве данных. Для этого определяются небольшие и наиболее информативные совокупности признаков, которые максимально показательны для ответа на вопрос исследования – есть в указанной местности то или иное ископаемое или нет. Можно провести аналогию с медициной: у месторождений тоже можно выявить свои синдромы. Ценность применения машинного обучения в этой области заключается в том, что полученные результаты не только носят практический характер, но и представляют серьёзный научный интерес для геологов и геофизиков.
Пример 3. Оценка надёжности и платёжеспособности кандидатов на получение кредитов
С этой задачей ежедневно сталкиваются все банки, занимающиеся выдачей кредитов. Необходимость в автоматизации этого процесса назрела давно, ещё в 1960–1970-е годы, когда в США и других странах начался бум кредитных карт.
Лица, запрашивающие у банка заём, – это объекты, а вот признаки будут отличаться в зависимости от того, физическое это лицо или юридическое. Признаковое описание частного лица, претендующего на кредит, формируется на основе данных анкеты, которую оно заполняет. Затем анкета дополняется некоторыми другими сведениями о потенциальном клиенте, которые банк получает по своим каналам. Часть из них относятся к бинарным признакам (пол, наличие телефонного номера), другие — к порядковым (образование, должность), большинство же являются количественными (величина займа, общая сумма задолженностей по другим банкам, возраст, количество членов семьи, доход, трудовой стаж) или номинальными (имя, название фирмы-работодателя, профессия, адрес).
Для машинного обучения составляется выборка, в которую входят кредитополучатели, чья кредитная история известна. Все заёмщики делятся на классы, в простейшем случае их 2 – «хорошие» заёмщики и «плохие», и положительное решение о выдаче кредита принимается только в пользу «хороших».
Более сложный алгоритм машинного обучения, называемый кредитным скорингом, предусматривает начисление каждому заёмщику условных баллов за каждый признак, и решение о предоставлении кредита будет зависеть от суммы набранных баллов. Во время машинного обучения системы кредитного скоринга вначале назначают некоторое количество баллов каждому признаку, а затем определяют условия выдачи займа (срок, процентную ставку и остальные параметры, которые отражаются в кредитном договоре). Но существует также и другой алгоритм обучения системы – на основе прецедентов.