парсинг на python код
Web Scraping с помощью python
Введение
Недавно заглянув на КиноПоиск, я обнаружила, что за долгие годы успела оставить более 1000 оценок и подумала, что было бы интересно поисследовать эти данные подробнее: менялись ли мои вкусы в кино с течением времени? есть ли годовая/недельная сезонность в активности? коррелируют ли мои оценки с рейтингом КиноПоиска, IMDb или кинокритиков?
Но прежде чем анализировать и строить красивые графики, нужно получить данные. К сожалению, многие сервисы (и КиноПоиск не исключение) не имеют публичного API, так что, приходится засучить рукава и парсить html-страницы. Именно о том, как скачать и распарсить web-cайт, я и хочу рассказать в этой статье.
В первую очередь статья предназначена для тех, кто всегда хотел разобраться с Web Scrapping, но не доходили руки или не знал с чего начать.
Off-topic: к слову, Новый Кинопоиск под капотом использует запросы, которые возвращают данные об оценках в виде JSON, так что, задача могла быть решена и другим путем.
Задача
Инструменты
Загрузка данных
Первая попытка
Приступим к выгрузке данных. Для начала, попробуем просто получить страницу по url и сохранить в локальный файл.
Открываем полученный файл и видим, что все не так просто: сайт распознал в нас робота и не спешит показывать данные.
Разберемся, как работает браузер
Однако, у браузера отлично получается получать информацию с сайта. Посмотрим, как именно он отправляет запрос. Для этого воспользуемся панелью «Сеть» в «Инструментах разработчика» в браузере (я использую для этого Firebug), обычно нужный нам запрос — самый продолжительный.
Как мы видим, браузер также передает в headers UserAgent, cookie и еще ряд параметров. Для начала попробуем просто передать в header корректный UserAgent.
На этот раз все получилось, теперь нам отдаются нужные данные. Стоит отметить, что иногда сайт также проверяет корректность cookie, в таком случае помогут sessions в библиотеке Requests.
Скачаем все оценки
Парсинг
Немного про XPath
XPath — это язык запросов к xml и xhtml документов. Мы будем использовать XPath селекторы при работе с библиотекой lxml (документация). Рассмотрим небольшой пример работы с XPath
Подробнее про синтаксис XPath также можно почитать на W3Schools.
Вернемся к нашей задаче
Каждый фильм представлен как
. Рассмотрим, как вытащить русское название фильма и ссылку на страницу фильма (также узнаем, как получить текст и значение атрибута).
Еще небольшой хинт для debug’a: для того, чтобы посмотреть, что внутри выбранной ноды в BeautifulSoup можно просто распечатать ее, а в lxml воспользоваться функцией tostring() модуля etree.
Резюме
В результате, мы научились парсить web-сайты, познакомились с библиотеками Requests, BeautifulSoup и lxml, а также получили пригодные для дальнейшего анализа данные о просмотренных фильмах на КиноПоиске.
Полный код проекта можно найти на github’e.
Парсинг сайтов на Python: подробный видеокурс и программный код
В видеокурсе из семи уроков описывается парсинг сайтов с различной структурой при помощи Python третьей версии, библиотек requests и BeautifulSoup.
В этом видеокурсе Олег Молчанов подробно, не торопясь, рассказывает про парсинг сайтов при помощи Python 3. Раскрываются особенности парсинга многостраничных ресурсов, использования прокси с различными User-Agent, сохранения изображений и распознавания простого текста, а также быстрый мультипроцессорный парсинг сайтов.
В ряде случаев предлагаемые автором программные решения несколько устарели из-за изменения структуры страниц, подвергаемых парсингу. Автор курса не преследует цели создать идеальный парсер, а лишь излагает определенные концепции и иллюстрирует их примерами. Для облегчения вашей работы, мы привели исходные коды программ, набранные нами во время прохождения курса, с некоторыми поправками.
1. Мультипроцессорный парсинг страницы сайта с экспортом данных в csv
В уроке рассматривается мультипроцессорный парсинг на примере сайта CoinMarketCap.com. Сначала приводится пример однопоточного парсинга. Затем рассматривается, как модифицировать программу для реализации мультипроцессорного подхода при помощи библиотеки multiprocessing. Сравниваются временные интервалы, необходимые для парсинга в один и несколько потоков. Попутно рассказывается об экспорте данных в csv-файл.
Обратите внимание: для установки BeautifulSoup для Python 3 в видео указана неправильная команда. Правильный вариант: pip install beautifulsoup4 (либо для систем с двумя версиями Python: pip3 install beautifulsoup4).
Программный код при однопоточном парсинге:
Программный код при использовании мультипроцессорного парсинга с 40 процессами:
Характерные времена могут разниться в зависимости от оборудования и текущего состояния сайта.
2. Парсинг многостраничных сайтов
Во втором уроке рассматривается извлечение информации с многостраничного сайта по типу Avito.ru. В качестве примера берется задача поиска телефона по названию фирмы изготовителя с выводом названия товара, цены, ближайшей станции метро и ссылки объявления. Показывается простейший способ фильтрации нерелевантных блоков.
Обратите внимание: при многостраничном парсинге таких сайтов, как Avito.ru, ваш IP может быть временно забанен на совершение парсинга.
3. Извлечение информации из генерируемых сайтом изображений
Во второй части видео о парсинге Avito внимание фокусируется на совмещении парсинга с извлечением информации из изображений. Для этой задачи вместо библиотеки BeautifulSoup используется библиотека Selenium, работающая непосредственно с браузером на вашем компьютере. Для совместной работы может потребоваться файл драйвера браузера. Захват изображений и преобразование в текстовые строки осуществляется при помощи библиотек pillow и pytesseract.
4. Приемы работы с библиотекой BeautifulSoup
В этом видео на более абстрактном примере локальной страницы даны дополнительные примеры работы методов find и find_all библиотеки BeautifulSoup. Показывается, как находить включающие информацию блоки при помощи методов parent, find_parent и find_parents. Описаны особенности работы методов next_element и next_sibling, упрощающих поиск данных в пределах одного раздела. В конце видео рассматривается, как сочетать поиск в BeautifulSoup с регулярными выражениями.
5. Использование прокси и изменение User-Agent
В пятом видео анализируется основной прием, помогающий избежать при парсинге бана или появления капчи посредством использования прокси-сервера с меняющимся адресом и изменения параметра User-Agent. Демонстрируется пример использования метода find_next_sibling. Рассмотрена передача IP и User-Agent при запросе библиотеки requests. Для использования актуального списка доступных прокси-серверов мы рекомендуем дополнить код парсером соответствующего сайта (в видео используются заранее подготовленные файлы со списками прокси и браузерных агентов).
6. Парсинг сайтов с «ненормальной» структурой
В этом видеоуроке на примере двух сайтов объясняется, как обрабатывать сайты с ошибками или сайты, сделанные непрофессионалами. Первый ресурс https://us-proxy.org/ представляет пример сайта, который выглядит как многостраничный, но это лишь видимость – все данные загружаются на главную страницу при первом обращении к сайту. Во втором примере в структуре блога http://startapy.ru/ используется три вертикальных списка с необычным горизонтальным смещением размещаемых блоков при добавлении новых публикаций. В видеоуроке показано, как средства анализа браузеров в связи с некорректной версткой могут вводить нас в заблуждение, при том что BeautifulSoup отображает и использует исправленный вариант.
7. Скачивание изображений и других файлов
Подробно про веб парсинг в Python с примерами
Что такое веб-парсинг в Python?
Парсинг в Python – это метод извлечения большого количества данных с нескольких веб-сайтов. Термин «парсинг» относится к получению информации из другого источника (веб-страницы) и сохранению ее в локальном файле.
Например: предположим, что вы работаете над проектом под названием «Веб-сайт сравнения телефонов», где вам требуются цены на мобильные телефоны, рейтинги и названия моделей для сравнения различных мобильных телефонов. Если вы собираете эти данные вручную, проверяя различные сайты, это займет много времени. В этом случае важную роль играет парсинг веб-страниц, когда, написав несколько строк кода, вы можете получить желаемые результаты.
Web Scrapping извлекает данные с веб-сайтов в неструктурированном формате. Это помогает собрать эти неструктурированные данные и преобразовать их в структурированную форму.
Законен ли веб-скрапинг?
Здесь возникает вопрос, является ли веб-скрапинг законным или нет. Ответ в том, что некоторые сайты разрешают это при легальном использовании. Веб-парсинг – это просто инструмент, который вы можете использовать правильно или неправильно.
Непубличные данные доступны не всем; если вы попытаетесь извлечь такие данные, это будет нарушением закона.
Есть несколько инструментов для парсинга данных с веб-сайтов, например:
Почему и зачем использовать веб-парсинг?
Необработанные данные можно использовать в различных областях. Давайте посмотрим на использование веб-скрапинга:
Широко используется для сбора данных с нескольких интернет-магазинов, сравнения цен на товары и принятия выгодных ценовых решений. Мониторинг цен с использованием данных, переданных через Интернет, дает компаниям возможность узнать о состоянии рынка и способствует динамическому ценообразованию. Это гарантирует компаниям, что они всегда превосходят других.
Web Scrapping идеально подходит для анализа рыночных тенденций. Это понимание конкретного рынка. Крупной организации требуется большой объем данных, и сбор данных обеспечивает данные с гарантированным уровнем надежности и точности.
Многие компании используют личные данные электронной почты для электронного маркетинга. Они могут ориентироваться на конкретную аудиторию для своего маркетинга.
Один новостной цикл может создать выдающийся эффект или создать реальную угрозу для вашего бизнеса. Если ваша компания зависит от анализа новостей организации, он часто появляется в новостях. Таким образом, парсинг веб-страниц обеспечивает оптимальное решение для мониторинга и анализа наиболее важных историй. Новостные статьи и платформа социальных сетей могут напрямую влиять на фондовый рынок.
Web Scrapping играет важную роль в извлечении данных с веб-сайтов социальных сетей, таких как Twitter, Facebook и Instagram, для поиска актуальных тем.
Большой набор данных, таких как общая информация, статистика и температура, удаляется с веб-сайтов, который анализируется и используется для проведения опросов или исследований и разработок.
Зачем использовать именно Python?
Есть и другие популярные языки программирования, но почему мы предпочитаем Python другим языкам программирования для парсинга веб-страниц? Ниже мы описываем список функций Python, которые делают его наиболее полезным языком программирования для сбора данных с веб-страниц.
В Python нам не нужно определять типы данных для переменных; мы можем напрямую использовать переменную там, где это требуется. Это экономит время и ускоряет выполнение задачи. Python определяет свои классы для определения типа данных переменной.
Python поставляется с обширным набором библиотек, таких как NumPy, Matplotlib, Pandas, Scipy и т. д., которые обеспечивают гибкость для работы с различными целями. Он подходит почти для каждой развивающейся области, а также для извлечения данных и выполнения манипуляций.
Целью парсинга веб-страниц является экономия времени. Но что, если вы потратите больше времени на написание кода? Вот почему мы используем Python, поскольку он может выполнять задачу в нескольких строках кода.
Python имеет открытый исходный код, что означает, что он доступен всем бесплатно. У него одно из крупнейших сообществ в мире, где вы можете обратиться за помощью, если застряли где-нибудь в коде Python.
Основы веб-парсинга
Веб-скраппинг состоит из двух частей: веб-сканера и веб-скребка. Проще говоря, веб-сканер – это лошадь, а скребок – колесница. Сканер ведет парсера и извлекает запрошенные данные. Давайте разберемся с этими двумя компонентами веб-парсинга:
Поискового робота обычно называют «пауком». Это технология искусственного интеллекта, которая просматривает Интернет, индексирует и ищет контент по заданным ссылкам. Он ищет соответствующую информацию, запрошенную программистом.
Веб-скрапер – это специальный инструмент, предназначенный для быстрого и эффективного извлечения данных с нескольких веб-сайтов. Веб-скраперы сильно различаются по дизайну и сложности в зависимости от проекта.
Как работает Web Scrapping?
Давайте разберем по шагам, как работает парсинг веб-страниц.
Шаг 1. Найдите URL, который вам нужен.
Во-первых, вы должны понимать требования к данным в соответствии с вашим проектом. Веб-страница или веб-сайт содержит большой объем информации. Вот почему отбрасывайте только актуальную информацию. Проще говоря, разработчик должен быть знаком с требованиями к данным.
Шаг – 2: Проверка страницы
Данные извлекаются в необработанном формате HTML, который необходимо тщательно анализировать и отсеивать мешающие необработанные данные. В некоторых случаях данные могут быть простыми, такими как имя и адрес, или такими же сложными, как многомерные данные о погоде и данные фондового рынка.
Шаг – 3: Напишите код
Напишите код для извлечения информации, предоставления соответствующей информации и запуска кода.
Шаг – 4: Сохраните данные в файле
Сохраните эту информацию в необходимом формате файла csv, xml, JSON.
Начало работы с Web Scrapping
Давайте разберемся с необходимой библиотекой для Python. Библиотека, используемая для разметки веб-страниц.
Примечание. Рекомендуется использовать IDE PyCharm.
BeautifulSoup – это библиотека Python, которая используется для извлечения данных из файлов HTML и XML. Она в основном предназначена для парсинга веб-страниц. Работает с анализатором, обеспечивая естественный способ навигации, поиска и изменения дерева синтаксического анализа. Последняя версия BeautifulSoup – 4.8.1.
Давайте подробно разберемся с библиотекой BeautifulSoup.
Установка BeautifulSoup
Вы можете установить BeautifulSoup, введя следующую команду:
BeautifulSoup поддерживает парсер HTML и несколько сторонних парсеров Python. Вы можете установить любой из них в зависимости от ваших предпочтений. Список парсеров BeautifulSoup:
Парсер | Типичное использование |
---|---|
Python’s html.parser | BeautifulSoup (разметка, “html.parser”) |
lxml’s HTML parser | BeautifulSoup (разметка, «lxml») |
lxml’s XML parser | BeautifulSoup (разметка, «lxml-xml») |
Html5lib | BeautifulSoup (разметка, “html5lib”) |
Мы рекомендуем вам установить парсер html5lib, потому что он больше подходит для более новой версии Python, либо вы можете установить парсер lxml.
Введите в терминале следующую команду:
BeautifulSoup используется для преобразования сложного HTML-документа в сложное дерево объектов Python. Но есть несколько основных типов объектов, которые чаще всего используются:
Объект Tag соответствует исходному документу XML или HTML.
Тег содержит множество атрибутов и методов, но наиболее важными особенностями тега являются имя и атрибут.
Тег может иметь любое количество атрибутов. Тег имеет атрибут “id”, значение которого – “boldest”. Мы можем получить доступ к атрибутам тега, рассматривая тег как словарь.
Мы можем добавлять, удалять и изменять атрибуты тега. Это можно сделать, используя тег как словарь.
В HTML5 есть некоторые атрибуты, которые могут иметь несколько значений. Класс (состоит более чем из одного css) – это наиболее распространенный многозначный атрибут. Другие атрибуты: rel, rev, accept-charset, headers и accesskey.
Строка в BeautifulSoup ссылается на текст внутри тега. BeautifulSoup использует класс NavigableString для хранения этих фрагментов текста.
Неизменяемая строка означает, что ее нельзя редактировать. Но ее можно заменить другой строкой с помощью replace_with().
В некоторых случаях, если вы хотите использовать NavigableString вне BeautifulSoup, unicode() помогает ему превратиться в обычную строку Python Unicode.
Объект BeautifulSoup представляет весь проанализированный документ в целом. Во многих случаях мы можем использовать его как объект Tag. Это означает, что он поддерживает большинство методов, описанных для навигации по дереву и поиска в дереве.
Пример парсера
Давайте разберем пример, чтобы понять, что такое парсер на практике, извлекая данные с веб-страницы и проверяя всю страницу.
Для начала откройте свою любимую страницу в Википедии и проверьте всю страницу, перед извлечением данных с веб-страницы вы должны убедиться в своих требованиях. Рассмотрим следующий код:
В следующих строках кода мы извлекаем все заголовки веб-страницы по имени класса. Здесь знания внешнего интерфейса играют важную роль при проверке веб-страницы.
В приведенном выше коде мы импортировали bs4 и запросили библиотеку. В третьей строке мы создали объект res для отправки запроса на веб-страницу. Как видите, мы извлекли весь заголовок с веб-страницы.
Веб-страница Wikipedia Learning
Давайте разберемся с другим примером: мы сделаем GET-запрос к URL-адресу и создадим объект дерева синтаксического анализа (soup) с использованием BeautifulSoup и встроенного в Python парсера “html5lib”.
Здесь мы удалим веб-страницу по указанной ссылке (https://www.javatpoint.com/). Рассмотрим следующий код:
Приведенный выше код отобразит весь html-код домашней страницы javatpoint.
Используя объект BeautifulSoup, то есть soup, мы можем собрать необходимую таблицу данных. Напечатаем интересующую нас информацию с помощью объекта soup:
Выход даст следующий результат:
Выход: это даст следующий результат:
Вывод: он напечатает все ссылки вместе со своими атрибутами. Здесь мы отображаем некоторые из них:
Программа: извлечение данных с веб-сайта Flipkart
В этом примере мы удалим цены, рейтинги и название модели мобильных телефонов из Flipkart, одного из популярных веб-сайтов электронной коммерции. Ниже приведены предварительные условия для выполнения этой задачи:
Шаг – 1: найдите нужный URL.
Первым шагом является поиск URL-адреса, который вы хотите удалить. Здесь мы извлекаем детали мобильного телефона из Flipkart. URL-адрес этой страницы: https://www.flipkart.com/search?q=iphones&otracker=search&otracker1=search&marketplace=FLIPKART&as-show=on&as=off.
Шаг 2: проверка страницы.
Необходимо внимательно изучить страницу, поскольку данные обычно содержатся в тегах. Итак, нам нужно провести осмотр, чтобы выбрать нужный тег. Чтобы проверить страницу, щелкните элемент правой кнопкой мыши и выберите «Проверить».
Шаг – 3: найдите данные для извлечения.
Извлеките цену, имя и рейтинг, которые содержатся в теге «div» соответственно.
Шаг – 4: напишите код.
Мы удалили детали iPhone и сохранили их в файле CSV, как вы можете видеть на выходе. В приведенном выше коде мы добавили комментарий к нескольким строкам кода для тестирования. Вы можете удалить эти комментарии и посмотреть результат.
Создание парсеров с помощью Scrapy и Python
Научимся писать парсеры с помощью Scrapy, мощного фреймворка для извлечения, обработки и хранения данных.
В этом руководстве вы узнаете, как использовать фреймворк Python, Scrapy, с помощью которого можно обрабатывать большие объемы данных. Обучение будет основано на процессе построения скрапера для интернет-магазина Aliexpress.com.
Базовые знания HTML и CSS помогут лучше и быстрее освоить материал.
Обзор Scrapy
Веб-скрапинг (парсинг) стал эффективным путем извлечения информации из сети для последующего принятия решений и анализа. Он является неотъемлемым инструментом в руках специалиста в области data science. Дата сайентисты должны знать, как собирать данные с веб-страниц и хранить их в разных форматах для дальнейшего анализа.
Любую страницу в интернете можно исследовать в поисках информации, а все, что есть на странице — можно извлечь. У каждой страницы есть собственная структура и веб-элементы, из-за чего необходимо писать собственных сканеров для каждой страницы.
Scrapy предоставляет мощный фреймворк для извлечения, обработки и хранения данных.
Scrapy использует Spiders — автономных сканеров с определенным набором инструкций. С помощью фреймворка легко разработать даже крупные проекты для скрапинга, так чтобы и другие разработчики могли использовать этот код.
Scrapy vs. Beautiful Soup
В этом разделе будет дан обзор одного из самых популярных инструментов для парсинга, BeautifulSoup, и проведено его сравнение со Scrapy.
Scrapy — это Python-фреймворк, предлагающий полноценный набор инструментов и позволяющий разработчикам не думать о настройке кода.
BeautifulSoup также широко используется для веб-скрапинга. Это пакет Python для парсинга документов в форматах HTML и XML и извлечения данных из них. Он доступен для Python 2.6+ и Python 3.
Вот основные отличия между ними:
Синхронность означает, что необходимо ждать, пока процесс завершит работу, прежде чем начинать новый, а асинхронный позволяет переходить к следующему процессу, пока предыдущий еще не завершен.
Установка Scrapy
Чтобы установить Anaconda, посмотрите эти руководства PythonRu для Mac и Windows.
Также можно использовать установщик пакетов pyhton pip. Это работает в Linux, Mac и Windows:
Scrapy Shell
Scrapy предоставляет оболочку веб-сканера Scrapy Shell, которую разработчики могут использовать для проверки своих предположений относительно поведения сайта. Возьмем в качестве примера страницу с планшетами на сайте Aliexpress. С помощью Scrapy можно узнать, из каких элементов она состоит и понять, как это использовать в конкретных целях.
Откройте командную строку и напишите следующую команду:
Необходимо запустить парсер на странице с помощью команды fetch в оболочке. Он пройдет по странице, загружая текст и метаданные.
fetch(“https://www.aliexpress.com/category/200216607/tablets.html”)
Примечание: всегда заключайте ссылку в кавычки, одинарные или двойные
Вывод будет следующий:
Отобразится скрипт, который генерирует страницу. Это то же самое, что вы видите по нажатию правой кнопкой мыши в пустом месте и выборе «Просмотр кода страница» или «Просмотреть код». Но поскольку нужна конкретная информация, а не целый скрипт, с помощью инструментов разработчика в браузере необходимо определить требуемый элемент. Возьмем следующие элементы:
Нажмите правой кнопкой по элементу и кликните на «Просмотреть код».
Использование CSS-селекторов для извлечения
Извлечь эту информацию можно с помощью атрибутов элементов или CSS-селекторов в виде классов. Напишите следующее в оболочке Scrapy, чтобы получить имя продукта:
extract_first() извлекает первый элемент, соответствующий селектору css. Для извлечения всех названий нужно использовать extract() :
Следующий код извлечет ценовой диапазон этих продуктов:
То же можно повторить для количества заказов и имени магазина.
Использование XPath для извлечения
XPath — это язык запросов для выбора узлов в документах типа XML. Ориентироваться по документу можно с помощью XPath. Scrapy использует этот же язык для работы с объектами документа HTML. Использованные выше CSS-селекторы также конвертируются в XPath, но в большинстве случаев CSS очень легко использовать. И тем не менее важно значить, как язык работает в Scrapy.
Откройте оболочку и введите fetch(«https://www.aliexpress.com/category/200216607/tablets.html/») как и раньше. Попробуйте написать следующий код:
Если необходимо получить все теги
Можно и дальше фильтровать начальные узлы, чтобы получить нужные узлы с помощью атрибутов и их значений. Это синтаксис использования классов и их значений.
Используйте text() для извлечения всего текста в узлах
Создание проекта Scrapy и собственного робота (Spider)
Парсинг хорошо подходит для создания агрегатора, который будет использоваться для сравнения данных. Например, нужно купить планшет, предварительно сравнив несколько продуктов и их цены. Для этого можно исследовать все страницы и сохранить данные в файл Excel. В этом примере продолжим парсить aliexpress.com на предмет информации о планшетах.
Создадим робота (Spider) для страницы. В первую очередь необходимо создать проект Scrapy, где будут храниться код и результаты. Напишите следующее в терминале или anaconda.
Файл/папка | Назначение |
---|---|
scrapy.cfg | Файл настройки развертывания |
aliexpress/ | Модуль Python проекта, отсюда импортируется код |
__init.py__ | Файл инициализации |
items.py | Python файл с элементами проекта |
pipelines.py | Файл, который содержит пайплайн проекта |
settings.py | Файл настроек проекта |
spiders/ | Папка, в которой будут храниться роботы |
__init.py__ | Файл инициализации |
После создания проекта нужно перейти в новую папку и написать следующую команду:
можно использовать функцию parse() из BeautifulSoup в Scrapy для парсинга HTML-документа.
zip() берет n элементов итерации и возвращает список кортежей. Элемент с индексом i в кортеже создается с помощью элемента с индексом i каждого элемента итерации.
Теперь можно запустить робота и посмотреть результат:
Экспорт данных
Данные должны быть представлены в форматах CSV или JSON, чтобы их можно было анализировать. Этот раздел руководства посвящен тому, как получить такой файл из имеющихся данных.
Для сохранения файла CSV откройте settings.py в папке проекта и добавьте следующие строки:
Примечание: при каждом запуске паука он будет добавлять файл.
Feed Export также может добавить временную метку в имя файла. Или его можно использовать для выбора папки, куда необходимо сохранить данные.
response.url вернет URL страницы, с которой был сгенерирован ответ. После запуска парсера с помощью scrapy crawl aliexpress_tables можно просмотреть json-файл в каталоге проекта.
Следующие страницы, пагинация
Если у страницы есть последующие, в ее конце всегда будут навигационные элементы, которые позволяют перемещаться вперед и назад.
Запомните! У каждой веб-страницы собственная структура. Нужно будет изучить ее, чтобы получить желаемый элемент. Всегда экспериментируйте с response.css(SELECTOR) в Scrapy Shell, прежде чем переходить к коду.
Измените aliexpress_tabelts.py следующим образом:
Теперь можно просто расслабиться и смотреть, как робот парсит страницы. Этот извлечет все из последующих страниц. Процесс займет много времени, а размер файла будет 1,1 МБ.
Scrapy сделает для вас все!
Из этого руководства вы узнали о Scrapy, о его отличиях от BeautifulSoup, о Scrapy Shell и о создании собственных проектов. Scrapy перебирает на себя весь процесс написания кода: от создания файлов проекта и папок до обработки дублирующихся URL. Весь процесс парсинга занимает минуты, а Scrapy предоставляет поддержку всех распространенных форматов данных, которые могут быть использованы в других программах.
Теперь вы должны лучше понимать, как работает Scrapy, и как использовать его в собственных целях. Чтобы овладеть Scrapy на высоком уровне, нужно разобраться со всеми его функциями, но вы уже как минимум знаете, как эффективно парсить группы веб-страниц.